CGER

Proceedings of the 6th Workshop on Greenhouse Gas Inventories in Asia (WGIA6)

"Capacity building support for developing countries on GHG inventories and data collection (measurability, reportability, and verifiability)" as a part of the "Kobe Initiative" of the G8 Environment Ministers Meeting

16-18 July 2008, Tsukuba, Japan

Greenhouse Gas Inventory Office of Japan (GIO), CGER, NIES

Center for Global Environmental Research

Proceedings of the 6th Workshop on Greenhouse Gas Inventories in Asia

"Capacity building support for developing countries on GHG inventories and data collection (measurability, reportability, and verifiability)" as a part of the "Kobe Initiative" of the G8 Environment Ministers Meeting

16-18 July 2008, Tsukuba, Japan

Greenhouse Gas Inventory Office of Japan (GIO), CGER, NIES

Center for Global Environmental Research

National Institute for Environmental Studies, Japan CHE

Proceedings of the 6th Workshop on Greenhouse Gas Inventories in Asia

"Capacity building support for developing countries on GHG inventories and data collection (measurability, reportability, and verifiability)" as a part of the "Kobe Initiative" of the G8 Environment Ministers Meeting, 16-18 July 2008, Tsukuba, Japan

Prepared by:

Kiyoto Tanabe, Jamsranjav Baasansuren, Yuriko Hayabuchi, Takako Ono, Kohei Sakai Greenhouse Gas Inventory Office of Japan (GIO) Center for Global Environmental Research (CGER) National Institute for Environmental Studies (NIES) 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan Fax: +81-29-858-2219 E-mail: cgerpub@nies.go.jp http://www-cger.nies.go.jp

We would like to thank Ms. Masako White and Tamaki Sakano (GIO) for their contribution.

Copies available from:

Center for Global Environmental Research (CGER) National Institute for Environmental Studies (NIES) 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan Fax: +81-29-858-2219 E-mail: cgerpub@nies.go.jp http://www-cger.nies.go.jp

Copyright 2009:

NIES: National Institute for Environmental Studies

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electric or mechanical, including photocopy, recording, or any information retrieval system, without permission in writing from NIES.

All copies in PDF format are available from: http://www-cger.nies.go.jp/cger-e/e_report/r_index-e.html

CONTENTS

Contentsi
Forewordv
Prefacevi
List of Acronyms and Abbreviations
Photos of the Workshop
Executive Summary of WGIA61
Workshop Report
Working Groups' Discussions
Presentations <i>Opening Session</i> 1) "Overview of WGIA6" by Yukihiro Nojiri, National Institute for Environmental Studies, Japan
2) "Progress Report on WGIA activities" by Jamsranjav Baasansuren, National Institute for Environmental Studies, Japan
 Session I: Promotion of International Cooperation 3) "Importance of Measurement for Global GHG Reduction" by Kotaro Kawamata, Ministry of the Environment, Japan
4) "Japan's Policies and Efforts on GHG Inventory, Measurement and Reporting"
by Sei Kato, Ministry of the Environment, Japan
5) "Latest Update on non-Annex I National Communications" by Dominique Revet, United Nations Framework Convention on Climate Change
6) "Cooperation with Europe" by Kiyoto Tanabe, National Institute for
Environmental Studies, Japan
7) "U.S. Programs and Efforts on GHG Inventories, Measurement and Reporting"
by Mausami Desai, United States Environmental Protection Agency
8) "Regional Capacity Building Project for Sustainable National GHG Inventory Management Systems in Southeast Asia (SEA Project)" by Leandro Buendia, SEA
Project
9) "Some African Experiences in GHG Inventory Preparation" by Todd Ngara,
United Nations Environment Program
Session II: Uncertainty Assessment 10) "Guidance to Session II" by Kiyoto Tanabe, National Institute for

Environmental Studies, Japan	50
11) "Uncertainty Analysis in Emission Inventories" by Simon Eggleston, Tech Support Unit (TSU)-National Greenhouse Gas Inventories Programme (NGGII Intergovernmental Panel on Climate Change (IPCC)	P)-
12) "Uncertainty Assessment of Japan's GHG Inventory" by Kohei Sakai,	
National Institute for Environmental Studies, Japan	60
13) "Uncertainty Assessment: India's Experience" by Sumana Bhattacharya,	
Ministry of Environment and Forests, India	63
14) "Uncertainty Evaluation of Waste Sector: Korea's Experience" by Cheon-	Hee
Bang, Environmental Management Corporation, Korea	69
15) "Uncertainty Assessment in GHG Inventories in Vietnam" by Nguyen Chi Quang, Vietnam National Coal-Mineral Industries Group	
<i>Tession III: Time Series Estimates and Projection</i> 16) "Guidance to Session III" by Kiyoto Tanabe, National Institute for	
Environmental Studies, Japan	77
17) "Global Warming-related Policies of the Japanese Government: Kyoto Pro	tocol
Target Achievement Plan" by Sei Kato, Ministry of the Environment, Japan	79
18) "Time Series Estimation and Projection of GHG Emissions" by Sirintornth Towprayoon, King Mongkut's University of Technology Thonburi, Thailand	1
19) "Indonesia's Experiences in Developing of Time Series Estimates and	
Projections (Including Evaluation of Impacts of Policies and Measures)" by	
Dadang Hilman, Ministry of Environment, Indonesia	88
<i>Tession IV: Working Group Discussion</i> 20) "Guidance to Session IV" by Kiyoto Tanabe, National Institute for	
Environmental Studies, Japan	91
ULUCF Sector Working Group 21) "Remote Sensing Based Monitoring System for LULUCF" by Yoshiki	
Yamagata, National Institute for Environmental Studies, Japan	93
22) "Approach for Preparing GHG Inventory from the LULUCF Sector in Indu by Sumana Bhattacharya, Ministry of Environment and Forests, India	
23) "Improving Secondary Forest Above-ground Biomass Estimates Using	
GIS-based Model" by Damasa B. Magcale-Macandog, University of the	
Philippines Los Banos	106
<i>Vaste Sector Working Group</i> 24) "Property and Reliability of Waste Data" by Tomonori Ishigaki, Ryukoku	
University, Japan	110
25) "Use of Surrogate Data in Waste Sector Estimation (China's case)" by Gad	С

Qingxian, Chinese Research Academy of Environmental Science	116
26) "Development of Waste Sector GHG Inventory in Japan" by Hiroyuki Ueda,	
Suuri Keikaku Co., Ltd., Japan	122
27) "Malaysia: Report for Greenhouse Gas Inventories for Second National Communication (NC2), (Waste Sector)" by Normadiah Haji Husien, Department	
of Environment, Malaysia	125
<i>Agriculture Sector Working Group</i> 28) "Introductory Presentation" by Kazuyuki Yagi, National Institute for Agro-Environmental Sciences	128
29) "Measurement Method of GHG Emission from Ruminants and Manure	
Management" by Osamu Enishi, National Institute of Livestock and Grassland	
Science	130
30) "CH ₄ and N_2O from Rice Paddies in 2006 IPCC GLs and Estimate of	
Japanese Country Specific N2O Emission Factors" by Hiroko Akiyama, National	
Institute for Agro-Environmental Sciences	133
31) "NC2 - GHG Inventory" by Shuhaimen Ismail, Malaysian Agricultural	
Research and Development Institute	138
32) "Thailand Greenhouse Gas Inventory in Agricultural Sector" by Amnat	
Chidthaisong, King Mongkut's University of Technology Thonburi, Thailand	143
33) "Vietnam's GHG Inventories in Agriculture Sector" by Nguyen Van Anh,	
Ministry of Natural Resources and Environment, Viet Nam	148
34) "GHG Inventory Issues in SEA Countries: Agriculture Sector" by Leandro	
Buendia, SEA Project	150
35) "A Perspective of Agriculture Sector Involvement in Asian GHG Inventory	
Beyond 2013" by Toshiaki Ohkura, National Institute for Agro-Environmental	
Sciences	151
<i>GHG Inventory Working Group</i> 36) "Raising Awareness of GHG Inventories and CC in the Philippines" by	
Jose Ramon T Villarin, Xavier University, Philippines	152
37) "Korea's Experience in Awareness Raising About GHG Inventory and	
Climate Change" by Kyonghwa Jeong, Korea Energy Economics Institute	154
38) "Other GHG Inventory Related Issues" by Takeshi Enoki, Mitsubishi UFJ	
Research and Consulting Co., Ltd., Japan	158
39) "Awareness Raising on GHG Inventory and Climate Change: Singapore" by	
Shu Yee Wong, National Environment Agency, Singapore	161
Hands-on Training Session on Key Category Analysis	

40) "Introduction to Key Source Analysis" by Jamsranjav Baasansuren,	National
Institute for Environmental Studies, Japan	163
Wrap-up Session 41) "Wrap-up Session Summary" by Mausami Desai, United States Environmental Protection Agency	166
Annexes	
I. Agenda	168
II. List of Participants	173

Foreword

Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to develop, periodically update and publish national inventories of anthropogenic emissions by sources and removals by sinks of all greenhouse gases not controlled by the Montreal Protocol (GHG inventories). GHG inventories play a critical role as a basis for decision makers to track trends of emissions and removals, and develop strategies to reduce the emissions and to enhance the removals.

The National Institute for Environmental Studies (NIES) has been organizing the "Workshop on GHG Inventories in Asia" (WGIA) annually since November 2003 with the support from the Ministry of the Environment of Japan. The purpose of WGIA is to assist countries in Asia in developing and improving their GHG inventories through the promotion of regional information exchange. The WGIA-participating countries have submitted their first inventories in the initial national communications and are working on their second or subsequent communications.

Since its foundation in 1990, the Center for Global Environmental Research (CGER) has been engaged on global environmental issues including climate change. CGER conducts environmental monitoring, maintains a global environment database, and acts as a focal point for a number of international and domestic projects of innovative environmental research. Moreover, CGER publishes reports on its research findings and activities regularly.

This CGER report serves as the proceedings of the 6th WGIA, which was held on July 16-18, 2008, in Tsukuba, Japan. We believe that this report will be useful to all those who work in the field of GHG inventory as well as climate change.

Gazahiro Sacano

Yasuhiro Sasano Director Center for Global Environmental Research (CGER) National Institute for Environmental Studies (NIES)

Preface

Global warming is one of the urgent problems facing international community. The Intergovernmental Panel on Climate Change (IPCC) stated in the Fourth Assessment Report (AR4) that most of the observed increase in global average temperature since the mid-20th century is "very likely" due to the observed increase in anthropogenic greenhouse gas (GHG) concentrations.

The Bali Action Plan adopted at the 13th Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) (COP13) refers to nationally appropriate mitigation actions by developing country Parties in the context of sustainable development, supported and enabled by technology, financing and capacity-building, in a measurable, reportable and verifiable manner. GHG inventories are essential in implementing such actions since it provides information on emissions and removals of GHGs, and enables to track and manage the emissions. The importance of setting up and running the GHG inventories was noted at the G8 Environment Ministers Meeting held in Kobe, Japan from 24 to 26 May, 2008.

The 6th Workshop on GHG Inventories in Asia (WGIA6) - "Capacity building support for developing countries on GHG inventories and data collection (measurability, reportability, and verifiability (MRV))" as part of Kobe Initiative of the G8 Environment Ministers meeting was held from 16 to 18 July, 2008 in Tsukuba, Japan.

This proceedings describes the WGIA6 highlighting the issues concerning GHG inventory that were discussed and shared during the workshop. It also includes the workshop agenda and list of the participants.

We hope WGIA meetings and activities contribute to further enhancement of the cooperative network of inventory experts and improvement of GHG inventory in the region. We would like to thank all participants for their efforts and contribution to the success of this workshop.

影机营花

Yukihiro Nojiri Manager Greenhouse Gas Inventory Office (GIO) Center for Global Environmental Research (CGER) National Institute for Environmental Studies (NIES)

加藤聖

Sei Kato Deputy Director Climate Change Policy Division Global Environment Bureau Ministry of the Environment, Japan

List of Acronyms and Abbreviations

AD	Activity data
CGE	Consultative Group of Experts
CH ₄	Methane
CO_2	Carbon dioxide
EF	Emission factor
GHG	Greenhouse gas
GPG	Good practice guidance
HFCs	Hydrofluorocarbons
IPCC	Intergovernmental Panel on Climate Change
LULUCF	Land Use, Land-Use Change and Forestry
NC	National Communications
N_2O	Nitrous oxide
NGGIP	National Greenhouse Gas Inventories Programme
PFCs	Perfluorocarbons
QA	Quality assurance
QC	Quality control
SBSTA	Subsidiary Body for Scientific and Technological Advice
SBI	Subsidiary Body for Implementation
SF_6	Sulphur hexafluoride
UNFCCC	United Nations Framework Convention on Climate Change
WGIA	Workshop on Greenhouse Gas Inventories in Asia

Photos of the Workshop

Welcome Remarks

Mr. Hideki Minamikawa

Welcome speech

Dr. Ryutaro Otsuka

Working Groups

Waste Sector Working Group

GHG Inventory Working Group

LULUCF Sector Working Group

Agriculture Sector Working Group

Dr. Yoshifumi Yasuoka

Closing Remarks

Executive Summary of WGIA6

The Ministry of the Environment (MoE) of Japan and the National Institute for Environmental Studies (NIES) has convened the 6th Workshop on Greenhouse Gas Inventories in Asia (WGIA6) "Capacity building support for developing countries on GHG inventories and data collection (measurability, reportability, and verifiability)" as a part of the "Kobe Initiative" of the G8 Environment Ministers Meeting on 16-18 July 2008 in Tsukuba, Japan.

The workshop was attended by 64 participants from thirteen WGIA-member countries (Cambodia, China, India, Indonesia, Japan, the Republic of Korea, Lao P.D.R., Malaysia, Mongolia, Philippines, Singapore, Thailand, Vietnam) in Asia and 10 participants/observers from Bangladesh, France, USA, United Nations Framework Convention on Climate Change (UNFCCC), Intergovernmental Panel on Climate Change (IPCC), United Nations Environment Programme (UNEP), and Regional Capacity Building Project for Sustainable National Greenhouse Gas Inventory Management Systems in Southeast Asia (SEA Project). The workshop as a whole was chaired by Mr. Takahiko Hiraishi (Institute for Global Environmental Strategies (IGES)/IPCC).

The objectives of the workshop were as follows:

- To discuss practical aspects of uncertainty assessment and key category analysis in GHG inventory
- To share experiences with time series estimates and projections
- To elaborate on possible improvements to data collection in Agriculture, Land use, land-use change and forestry (LULUCF) and Waste sectors
- To discuss issues on awareness raising about GHG inventory and GHG mitigation
- To discuss possible ways of enhancing cooperation among Japan, the United States, European countries and Asian countries to promote inventory-related work in Asian countries taking the Bali Action Plan and other recent international agreements into account

The workshop was opened with welcoming address from Mr. Hideki Minamikawa (MoE) which was followed by welcoming speech from Dr. Ryutaro Ohtsuka (NIES).

The session I was on the promotion of international cooperation. The discussions and presentations in this session were focused on policies and efforts on GHG inventory, measurement and reporting, activities and lessons learned from GHG inventory-related

regional projects. It was recognized that there is a need to promote information exchange and collaborative relationship among donor countries (i.e., Japan, USA and European countries) in order to effectively support the countries in Asia in improving their GHG inventories. The participants welcomed the on-going cooperation between WGIA and the SEA Project. They encouraged the WGIA secretariat to further enhance this complementary and mutually-beneficial cooperation.

The session II was on uncertainty assessment of GHG inventory. The secretariat made an introductory presentation which was followed by the presentations on methodological guidance to uncertainty assessment from Technical Support Unit (TSU)-National Greenhouse Gas Inventories Programme (NGGIP)-IPCC and countries' experiences from India, Korea, Japan and Vietnam. Many participants noted the importance of uncertainty assessment in improving the accuracy of GHG inventory, in view of the fact that GHG inventories provide information for developing mitigation policies and monitoring their impacts. The participants agreed that it would be useful for WGIA-member countries to implement uncertainty assessment although it is not mandatory for non-Annex I Parties. It was therefore suggested that WGIA member countries voluntarily implement uncertainty analysis for part or whole of the inventory, to the extent possible, and report the results at the next WGIA meeting for further discussion on how to improve their GHG inventories.

The session III focused on time series estimates and projections of GHG emissions. It was pointed out that time series estimates and projections of GHG emissions/removals are beneficial in developing the mitigation policies and measures, and tracking their results. Participants agreed on the importance of establishing and maintaining institutional arrangements that facilitate time series estimates for GHG inventory. In order to facilitate time series development, case-studies are suggested for WGIA-member countries and Japan expressed its intention to consider supporting these case-studies upon request of the WGIA-member countries.

The session IV was working group (WG) discussions and participants were divided into four working groups: LULUCF, waste, agriculture sector and GHG inventory. The presentations and discussions at the LULUCF sector WG dealt with applications of remote sensing data and geographic information systems (GIS) -based model in and approaches for preparing the LULUCF GHG inventory. The WG identified major constraints encountered in preparing and improving the LULUCF sector inventory such

CGER-I087-2009, CGER/NIES

as a lack of country-specific emission factors (EFs) that better reflect regional characteristics (e.g., climate, vegetation). It was recognized that the use of remote sensing and GIS data help improve the LULUCF inventory. The participants stressed the need for training on these techniques.

The agriculture sector WG discussed the current status and challenges in GHG inventory for agriculture sector in Asian countries with the focus on inventory data. Reliability of data is a major challenge for agriculture sector inventory, and estimation of EFs using the literature data, development of country-specific EFs and enhanced information exchange are identified as possible ways to improve the inventory data. The participants stressed that it is necessary to build a framework for using the shared information in identification of challenges and solutions to the problems. The participants expressed their interest in discussion of soil carbon-related issues at the next WGIA meeting. They stressed the need for sharing of strategies for communicating to policy makers on multipurpose application of inventory data.

The waste sector WG focused on availability and reliability of waste sector inventory data. The participants recognized that waste collection, treatment and composition vary with each country. They agreed that identification of country-specific waste stream and development of data collection common format are important in improving the quality of waste data and waste sector GHG inventory in Asian countries. It was recognized that identification of country-specific waste stream and awareness-raising of policy makers are also essential in improving waste sector inventory. The participants expressed their interest to discuss wastewater-related issues at the next meeting.

The GHG inventory WG dealt with awareness raising about GHG inventory, possible applications of inventory data and promotion of information exchange. The participants recognized the importance of awareness raising of a wide range of stakeholders about GHG inventory and mitigation. They also agreed that it is worth considering applications of inventory data in areas other than mitigation policies/measures. They noted that information on awareness raising activities in WGIA-member countries could be exchanged through WGIA-online network. Moreover, it was suggested that the WGIA and the SEA project should cooperate to develop template on communicating with policy makers. Some participants stressed the need to develop a roster of regional experts and relevant institutions. It was also noted that the WGIA could serve as a forum to evaluate/compare member countries' inventories in whole or part on a voluntary basis. After the WG discussions, a hands-on training on key source analysis was implemented.

In wrap-up session, summary of the discussions at plenary sessions and working

-3 -

groups were presented by rapporteurs. The participants also discussed about the future activities of WGIA. They stressed the need for continued and enhanced information exchange, and more targeted use of WGIA-online network. The participants expressed their interest to discuss GHG inventory issues in energy and industrial processes sectors, update or review of country/region-specific EFs, roster of experts and other ongoing WGIA-network activities at the next meeting. The need for continued support in training of inventory compliers was recognized. The WGIA secretariat proposed to offer such opportunities again at future meetings, which was welcomed by participants.

The workshop was closed by Dr. Yoshifumi Yasuoka (NIES) with expression of gratitude to all participants for their excellent presentations and fruitful discussion.

Workshop Report

Opening session

The workshop was opened by welcome address of Mr. Hideki Minamikawa, the Director-General of the Global Environmental Bureau, Ministry of the Environment (MoE), Japan. He welcomed all participants and noted the importance of GHG inventory in relation to international discussions on "measurability, reportability, and verifiability (MRV)". Mr. Minimikawa pointed out that WGIA is one of the efforts of Japan to assist developing countries in preparing and improving their GHG inventories.

This was followed by welcome speech by Dr. Ryutaro Ohtsuka, the President of the National Institute for Environmental Studies (NIES). He pointed out the timeliness of the workshop following the G8 Environmental Ministers Meeting held in Kobe and G8 Hokkaido Toyako Summit. Dr. Otsuka also outlined the history and activities of NIES and Center for Global Environmental Research (CGER) including Greenhouse Gas Inventory Office (GIO).

Mr. Takahiko Hiraishi (IGES/IPCC), the chairperson of this workshop, stressed that the WGIA had served, and should continue to serve, as a forum for technical discussion by GHG inventory experts in the region, and that it should be distinguished from the other fora for political debate or negotiations.

Dr. Yukihiro Nojiri (GIO-CGER-NIES) introduced the objectives and structure of the workshop. The objectives of the workshop were as follows:

- To discuss practical aspects of uncertainty assessment and key category analysis in GHG inventory
- To share experiences with time series estimates and projections
- To elaborate on possible improvements to data collection in Agriculture, LULUCF and Waste sectors
- To discuss issues on awareness raising about GHG inventory and GHG mitigation
- To discuss possible ways of enhancing cooperation among Japan, the United States, European countries and Asian countries to promote inventory-related work in Asian countries taking the Bali Action Plan and other recent international agreements into account

Dr. Jamsranjav Baasansuren (GIO-CGER-NIES) reported on the progress of WGIA activities. She stated that WGIA online-network was initiated through the mailing list of WGIA experts to promote further exchange of information and experiences in preparation of second national communications (NC). Several activities have been undertaken through the online-network including collection of country-specific EFs developed in WGIA-participating countries. The data will be synthesized and integrated into common format in order to make available to WGIA-members. She also noted that to complement our activities and utilize effectively the resources in the region, WGIA works in close collaboration with other projects in the region such as Regional Capacity Building Project for Sustainable National GHG Inventory Management Systems in Southeast Asia (SEA Project), and Improvement of Solid Waste Management and Reduction of GHG Emission in Asia (SWGA).

Session I: Promotion of International Cooperation

The session I discussion was chaired by Dr. Yukihiro Nojiri (GIO-CGER-NIES) and rapporteur was Dr. Jose Ramon T Villarin (Xavier University, Philippines).

Mr. Kotaro Kawamata (MoE, Japan) reported the accomplishment of G8 Hokkaido Toyako Summit (July, 2008) and "Kobe Initiative" of G8 Environment Ministers Meeting (May, 2008). He introduced that this workshop was held as the first meeting of "Kobe Initiative" with capacity building support for developing countries on inventories and data collection.

Mr. Sei Kato (MoE, Japan) reported that the total GHG emissions in 2006 were about 1,340 million tons in CO₂ equivalents, which is a 6.2% increase from emissions in the base year under the Kyoto Protocol. He introduced the Japan's Voluntary Emissions Trading Scheme (JVETS) as Japan's policies and efforts on GHG inventory, measurement and reporting, and JVETS guidelines such as "JVETS Monitoring and Reporting Guidelines". He also noted that Japan will consider supporting capacity building in developing countries for the collection and provision of data through WGIA.

Mr. Dominique Revet (UNFCCC) gave a presentation on the latest news on non-Annex I NC and national GHG inventories. He reported that the 28th Session of the Subsidiary Body for Implementation (SBI 28) in June 2008 resumed discussions on the mandate and terms of reference of the Consultative Group of Experts (CGE) (Decision 3/CP.8) and draft decision with brackets forwarded to SBI 29 in December 2008. He

also emphasized the importance of sharing the information through inventory preparation.

Mr. Kiyoto Tanabe (GIO-CGER-NIES) gave a presentation on cooperation with European countries. He emphasized that WGIA secretariat continues to maintain contact with the European countries. Relevant information may be obtained from Europe Aid and various bilateral capability building projects undertaken by member states. Some lessons can be learned from such projects and for instance from Technical Aid to the Commonwealth of Independent States (TACIS) 2002.

Ms. Mausami Desai (United States Environmental Protection Agency (US EPA)) reported U.S. and specifically EPA's capacity building activities focus on specific measurable and realistic outcomes as USA's policies and efforts on GHG inventory, measurement and reporting. She also mentioned two sets of tools for national GHG inventories, namely the national system templates, and the targeted data collection strategies and software tools to assist developing countries in applying higher tier methods for key sectors.

Mr. Leandro Buendia (SEA Project) talked about the project activities and noted that the purpose of the project is to strengthen the capacity of Southeast Asian countries to improve the quality of their national GHG inventory for the development of sustainable inventory management systems. He also reported that kick-off workshop of the SEA Project was held in Singapore, April, 2008.

Mr. Todd Ngara (UNEP) reported that UNEP assists 22 African countries in the preparation of the second NC through GEF funding. He mentioned that the LULUCF sector was considered important because about 55% of GHG emissions are from the LULUCF sector in the region. He also noted the need to improve EFs, specific problems identified in both LULUCF and agriculture, and the notable peculiarities of the region.

Participants discussed each country's specific issues related to capacity building, measurement, data collection system for preparation of GHG inventory and local research in EF and activity data (AD). Participants agreed on the necessity of developing country-specific values for EFs and other parameters based on data collection in each country. It was recognized that information exchange and collaborative relationship among donor countries (i.e., Japan, USA and European

countries) should be promoted in pursuit of efficiency in supporting developing countries.

Session II: Uncertainty Assessment

This session was chaired by Mr. Leandro Buendia (SEA Project) and the rapporteur was Dr. Amnat Chidthaisong (King Mongkut's University of Technology Thonburi, Thailand). The session mainly focused on usefulness of uncertainty assessment and discussed how to address the assessment.

Mr. Kiyoto Tanabe (GIO-CGER-NIES) provided the introductory presentation and brought up questions; why uncertainty assessment was important; how useful it was; and what was the next step after completing uncertainty assessment. He invited participants to discuss these questions and consider whether it was really worth performing uncertainty assessment under their current circumstances. He also invited participants to consider how the WGIA participants could cooperate to facilitate uncertainty assessment in each country, if they concluded they needed to perform it.

Dr. Simon Eggleston (TSU-NGGIP-IPCC) explained the importance of uncertainty assessment and presented concrete methods how to do it. He illustrated two cases of uncertainty assessment and mentioned that uncertainty estimates would give useful information for improving inventories as well as for formulating mitigation approach and policy. He explained that even simple uncertainty assessment would assist improving GHG inventories and that good quality assurance (QA)/quality control (QC) and careful consideration on estimation methods could reduce uncertainties. Finally, he stated that assessment of uncertainty in the input parameters should be part of the standard data collection QA/QC.

Mr. Kohei Sakai (GIO-CGER-NIES) presented Japan's experiences with respect to uncertainty assessment. He explained that Japan decided which method was applied to each of EFs and AD in accordance with the decision tree established by the Committee for the GHG Emissions Estimation Methods of Japan and performed uncertainty assessment annually on EFs and AD on all sectors. He also presented concrete examples for Energy, Industrial Processes, Agriculture, LULUCF and Waste sectors. He mentioned that results of uncertainty assessment were generally considered to be useful to identify priority categories for inventory improvement, but the results were seldom utilized in Japan. The reasons were that reliability of uncertainty assessment was partially not high enough and that categories with high priority could be guessed without uncertainty assessment.

Dr. Sumana Bhattacharya (Ministry of Environment and Forests, India) made a presentation regarding India's experiences of uncertainty assessment. She mentioned that India applied uncertainty assessment for improving the accuracy and precision of its inventories, and that it developed institutional arrangements for reducing uncertainty in the initial and second NC. She also explained that uncertainty was reduced through developing local EFs, refining existing factors, moving towards higher tiers for key sources, bridging data gaps, and launching standard QA/QC. Moreover, she presented activities of India's LULUCF sector as an example of putting results of uncertainty assessment to practical use and stated that good databases were available for livestock and rice methane emissions.

Dr. Cheon-Hee Bang (Environmental Management Corporation (EMC), Republic of Korea) presented Korea's experiences of uncertainty assessment in the waste sector. He stated that uncertainty assessment was an essential part of inventory improvement, and it was useful for prioritizing efforts to improve inventory's accuracy. According to his presentation, two uncertainty assessment methods (the error propagation equation and the Monte-Carlo method) were used for Korea's waste sector. He mentioned that Korea would improve uncertainty assessment by utilizing the Monte-Carlo method in the future.

Dr. Nguyen Chi Quang (Vietnam National Coal-Mineral Industries Group) gave a presentation regarding uncertainty assessment in Vietnam. He stated that it was difficult for non Annex I Parties to implement uncertainty assessment appropriately because of lack of data. In order to overcome this problem, he recommended participants to share information on uncertainty estimates and background data that could be used in other countries in a similar situation.

Discussions were followed after the above presentations. Mr. Kiyoto Tanabe (GIO-CGER-NIES) encouraged countries that had not yet implemented uncertainty assessment to implement it by the next WGIA meeting. Several countries expressed their comments as responses to Mr. Tanabe's recommendation; some comments mentioned that they were willing to challenge uncertainty assessment, but others told that there were few values to implement it under insufficient data condition. Mr.

Takahiko Hiraishi (IGES/IPCC) stressed that uncertainty assessment would be easy and worthwhile "IF" data were available, and said that, otherwise it would not be feasible. Dr. Simon Eggleston (TSU-NGGIP-IPCC) mentioned that, although participants did not have to consume much time for uncertainty assessment, implementing uncertainty assessment on part of data collection would be valuable for improving their second NC. Finally, Mr. Leandro Buendia (SEA Project) recommended participants, if possible and if they wish to do so, to implement uncertainty assessment using GHG inventories in their initial NC and to present the results at the WGIA7 meeting.

Session III: Time Series Estimates and Projection

This session was chaired by Mr. Dominique Revet (UNFCCC), and the rapporteur was Dr. Todd Ngara (UNEP). The session mainly focused on importance of time series estimates and projection and discussed how to overcome barriers against developing time series and projection.

Mr. Kiyoto Tanabe (GIO-CGER-NIES) offered the introductory presentation and explained that time-series consistency was important for allowing the comparison of emissions between different years and for formulating appropriate projections of GHG emissions and removals. He recommended participants to discuss the following issues:

- What were barriers against developing time series and projections of GHG emissions and removals
- What actions would be effective for removing those barriers
- How we could cooperate within the WGIA framework

Mr. Sei Kato (MoE, Japan) presented Japan's time-series estimates and projections. He explained that Japan prepared time-series estimates, predicted future emissions based on the trend of the estimates as well as on necessary aspects such as population, and developed the Kyoto Protocol Target Achievement Plan for reducing its future emissions in accordance with its commitment under the Kyoto Protocol. He also presented various countermeasures for achieving the commitments.

Dr. Sirintornthep Towprayoon (King Mongkut's University of Technology Thonburi, Thailand) gave a presentation of Thailand's experience for time-series estimates and projection. She mentioned that time-series estimation helped to analyze historical activities of the country and to see trend in the future. She also stated that using only one national data source, which was the most reliable one, could avoid confusion and controversy of data analyses.

Mr. Dadang Hilman (State Ministry of Environment, Indonesia) presented Indonesia's experience. He explained that Indonesia's inventory in the second NC was improved comparing with its initial NC. For example, some default values of EFs used in the initial NC were converted to national-specific values in the second NC. He mentioned that strengthening institutional capacity to collect and collate data, establishing local EFs, and enhancing capability of Indonesia to reduce uncertainty of emission values were necessary for future improvement.

After the above presentations, participants discussed the importance and necessity of time-series estimates and projection. They agreed that time-series consistency and projection were important for developing an appropriate policy to reduce their GHG emissions even though they were not mandates for non-Annex I countries. They also pointed out the importance of documenting the data sets and methodologies used in developing time series. The participants suggested the WGIA secretariat should think of holding theme-specific workshops for different sectors in order to improve their time-series consistency and projection.

Session IV: Working Group Discussions

In this session the participants were divided into 4 working groups (Agriculture, LULUCF, Waste and GHG inventory) to:

- exchange technically detailed information about GHG inventory data collection in LULUCF, Waste, Agriculture sectors and elaborate on possible improvements
- discuss on GHG inventory related issues such as awareness raising about GHG inventory and application of inventory data

Agricultural Sector Working Group

The Agricultural working group discussion was chaired by Dr. Kazuyuki Yagi (National Institute for Agro-Environmental Sciences (NIAES), Japan) and rapporteur was Dr. Shuhaimen Ismail (Malaysian Agricultural Research and Development Institute (MARDI)). The group mainly focused on strategies to improve reliability of agricultural data and current status and challenges in agriculture sector inventory and discussed how to get reliable data of agriculture.

Strategies to improve reliability of agricultural data were reported by Japan. Dr. Osamu Enishi (National Institute of Livestock and Grassland Science (NILGS), Japan)

reported GHG measurement from ruminants and manure managements. For enteric fermentation from livestock cattle, country-specific equation for estimating methane emissions from dry matter intake had been used. And this equation was developed from actual CH₄ emission data by researches. For manure management, EFs were developed from actual measuring emission using special equipment.

Dr. Hiroko Akiyama (NIAES), reported on CH_4 and N_2O from rice paddies in the 2006 IPCC Guidelines and estimation of Japanese country specific N_2O EFs. For CH_4 from rice paddies, key factors such as soil pH, temperature and moisture were introduced. For N_2O emissions from Japanese agricultural fields, collected data were consisted from 246 measurements from 36 sites. Research results were published as research paper, and these data had been used as Japan's EF to estimate N_2O emissions from agricultural soils, and these data were also described in the 2006 IPCC Guidelines.

Current status and challenges in agriculture sector inventory were reported from Malaysia, Thailand, Vietnam, SEA Project and Japan. Dr. Shuhaimen Ismail (MARDI) reported agriculture inventory in Malaysia, especially noted about second NC. AD were composed of the data of the Ministry of Agriculture, department of statistics, Food and Agriculture Organization (FAO) database and local experts. For manure management, factors were estimated by experts. Rice cultivation were a key category in Malaysia, and rice cultivation areas were divided by following sector; granary, non granary and upland. Emissions from agriculture sector in second NC reduced from the initial NC.

Dr. Amnat Chidthaisong (King Mongkut's University of Technology Thonburi, Thailand) reported Thailand's GHG inventory in agricultural sector. In Thailand, agriculture was the second most important sector as greenhouse gas emission source. CH_4 from Rice Production, CH_4 from enteric fermentation and N_2O from manure management were chosen as key categories by key category analysis (KCA) in agriculture sector.

Ms. Van Anh Nguyen (Ministry of Natural Resources and Environment, Vietnam) reported GHG inventory in agriculture of Vietnam. And main theme was second NC. Ratio of GHG emission for agriculture was about 45% in 2000 (with LULUCF), and this sector was the biggest GHG emission source in Vietnam. EF for rice cultivation, which was the biggest GHG emission source in agriculture sector, were separated by district as a follow: north, central and south.

CGER-I087-2009, CGER/NIES

Mr. Leandro Buendia (SEA Project) reported GHG inventory issues in Southeast Asian countries in agriculture sector. In Southeast Asia, key issues were following: categorization of water regime for rice cultivation, EF and AD for N₂O emission from cropland, enhanced characterization to estimate GHG emissions from enteric fermentation, local EF for manure management. Additionally, collaboration with International Rice Research Institute (IRRI) and Livestock Emissions and Abatement Research Network (LEARN) was proposed.

Dr. Toshiaki Okura (NIAES) presented on soil carbon in arable land. Soil carbon was an issue of LULUCF sector at this time, but agriculture sector and LULUCF sector were combined in the 2006 IPCC Guidelines, which will be used in near future. And this was the issue for agricultural soil, so it was introduced in this working group. Furthermore, by policy of the Ministry of Agriculture, Forestry and Fisheries of Japan, researches were advanced to consider agricultural soil practiced continual management as a sink of carbon in the next commitment period. In Japan, national soil monitoring project had been practiced. Variations in soil carbon over 20 years were introduced.

Based on the results and discussions for these presentations, participants discussed issues identified and possible solutions. They concluded that reliability of data was a major challenge for agriculture sector inventory, and estimation of EFs using the literature data, development of country-specific EFs and enhanced information exchange are identified as possible ways to improve the inventory data. The participants stressed that it was necessary to build a framework, including both international collaboration and in-national one, for using the shared information in identification of challenges and solutions to the problems.

Finally, participants recommended that each country present country-specific EFs developments and exchange agriculture information at the next WGIA. Soil carbon, sustainable agriculture production and enhanced international collaboration were also recommended as subjects for discussion at future WGIA meetings.

LULUCF Sector Working Group

This session was chaired by Dr. Sumana Bhattacharya (Ministry of Environment and Forests, India), and the rapporteur was Dr. Batimaa Punsalmaa (Ministry of Nature and Environment, Mongolia). The session mainly focused on usefulness of remote sensing data and modelling for obtaining AD on the LULUCF sector and discussed how to utilize the data.

Dr. Yoshiki Yamagata (NIES) offered a presentation regarding remote-sensing based monitoring system for the LULUCF sector. He explained that deforestation was a critical issue for addressing climate change because of the huge amount of its emissions in many developing countries. He mentioned that remote-sensing-based monitoring systems were effective for estimating CO_2 emissions from the LULUCF sector. As an example, he introduced Australia's inventory development system for the LULUCF sector, which used only remote sensing data for estimating emissions and removals by the LULUCF sector.

Dr. Sumana Bhattacharya (Ministry of Environment and Forests, India) presented India's experiences for developing inventories of the LULUCF sector. She mentioned that India generated remote sensed maps that were in line with the IPCC Good Practice Guidance for Land Use, Land-Use Change, and Forestry (GPG-LULUCF) and integrated remote sensing data on the GIS-based platform. She also explained that India used a tier 3 method – a modeling approach – for estimating carbon stock changes in soil.

Dr. Damasa B. Magcale-Macandog (University of the Philippines Los Banos) gave a presentation on improving secondary forest above-ground biomass estimates in Philippines. She explained how to use a GIS-based model for improving the estimates. She mentioned that the GIS-based model was effective for estimating density of above ground biomass nationwide at different locations and environmental conditions in the Philippines.

Dr. Mitsuo Matsumoto (Forestry and Forest Products Research Institute, Japan) offered a presentation of Japan's forest carbon accounting system for Kyoto reporting. He explained that Japan used detailed on-site data for inventory development and applied sampling and remote sensing data for inventory verification. He also presented the methodology of estimating carbon stock changes in dead organic matters and soils in Japan's forests, for which the CENTURY model tuned for fitting Japan's national-specific conditions (the CENTURY-jfos model) were applied.

In the discussions after the above presentations, participants agreed that the LULUCF sector was a key for most of the countries invited to WGIA6, and that remote sensing on GIS platform along with the ground truthing of permanent plots was the key for developing a good GHG inventory of this sector. Moreover, the participants were

strongly interested in the use of tier 3 models, and recommended the WGIA secretariat to provide a training session on a tier 3 model such as the CENTURY model. Dr. Kyeong-hak Lee (Korea Forest Research Institute) recommended participants to present, at the next WGIA, countries' experience with respect to issues relating to uncertainties, AD collection, and so forth, taking into consideration any relevant discussions including what transpired form the expert meeting on the LULUCF sector held by the IPCC.

Waste Sector Working Group

The waste working group discussion was chaired by Dr. Tomonori Ishigaki (Ryukoku University, Japan) and rapporteur was Dr. Sirintornthep Towprayoon (King Mongkut's University of Technology Thonburi, Thailand). The group mainly focused on AD related issues and discussed how to improve the reliability of waste data.

Dr. Ishigaki presented the waste issues discussed at the second SWGA workshop held in February, Fukuoka, Japan. He highlighted the property and reliability of solid waste management data such as data on waste generation, waste stream and waste composition. He emphasized that waste management practices in each country and availability of reliable waste statistics greatly affect the property and reliability of the data. The presentation of Dr. Ishigaki was followed by three presentations from China, Japan and Malaysia.

The presentation by Dr. Qingxian Gao (Chinese Research Academy of Environmental Science (CRAES)) discussed the use of surrogate data in waste sector estimation (China's case). He highlighted that data sharing mechanisms is important in improving the AD as well as the inventory.

Mr. Hiroyuki Ueda (Suuri Keikaku Co., Ltd., Japan) gave a presentation on the development of waste sector GHG inventory in Japan. He introduced the history of the improvement and elaborated on the waste and carbon flow focusing on MSW plastics. Mr. Ueda highlighted the importance of developing statistics that covers all waste flow in order to improve the inventory.

Dr. Normadiah Haji Husien (Ministry of Natural Resources and Environment, Malaysia) made a presentation on GHG inventory of waste sector for second NC. The emissions from waste sector were estimated for 1994 and 2000 by using both the 1995 IPCC Guidelines and the Revised 1996 IPCC Guidelines. She noted that a lack of

detailed data and information is still one of the major constraints in inventory preparation.

The participants recognized that waste management and waste composition vary with each country. They agreed that identification of country-specific waste stream and development of data collection common format are important in improving the quality of waste data and waste sector GHG inventory in Asian countries.

GHG Inventory Working Group

The GHG Inventory working group discussion was chaired by Mr. Thy Sum (Ministry of Environment, Cambodia), and the rapporteur was Dr. Simon Eggleston (TSU-NGGIP-IPCC). The group dealt with raising awareness about GHG inventory, possible applications of inventory data, and the promotion of information exchange.

Current experiences in raising awareness about GHG inventory and climate change in this working group were reported from the Philippines, Korea, Japan and Singapore. Dr. Jose Ramon T Villarin (Xavier University, Philippines) presented the outcomes of the activities as raising awareness of GHG inventories and climate change in the Philippines. They are currently working on its second NC and making efforts to improve their data collection methods.

Ms. Kyonghwa Jeong (Korea Energy Economics Institute) gave a presentation on the development of activities for awareness-raising about GHG inventory and climate change through events (seminars and campaigns), internet portal sites, and education. It is necessary to develop a long-term public awareness program through internet portal sites, TV and newspaper in order to, for example, disseminate information about what people can do at home and at work in an effort to reduce GHGs.

Mr. Takeshi Enoki (Mitsubishi UFJ Research & Consulting Co., Ltd., Japan), explained the "Team Minus 6%" campaign through TV, internet, newspapers, pamphlets and symposiums. Japan's commitment under the Kyoto Protocol is to reduce its GHG emissions during the first commitment period to 6% below 1990 levels. He highlighted information exchange on country-specific EFs, and methodologies that can help to improve our GHG Inventories.

Ms. Shu Yee Wong (National Environment Agency, Singapore) reported that National Climate Change Committee (NCCC) was formed to promote energy efficiency and a less carbon-intensive economy. The NCCC Main Committee is assisted in its work by four sub-committees and four workgroups, the Building Sub-committee, Households Sub-committee, Industry Sub-committee, Transportation Sub-committee, and R&D Workgroups. In addition, the National Climate Change Strategy presents their efforts to better understand vulnerabilities to climate change and to assess adaptation measures to address the impacts of climate change.

In Asian countries, in order to raise awareness about GHG inventories and climate change, it is important to share information with policy makers, and in order to gain support for inventory development in each country, it is necessary to train human resources. Discussion in the GHG inventory working group covered a wide variety of topics including communication with policy makers, human resources, inventory compiler training programs, and uncertainty analysis.

Hands-on Training on Key Source Analysis

After the working group discussions, a hands-on training on key source analysis (KSA) was implemented as it had been requested repeatedly in the previous meetings as well as through the on-line network by the WGIA colleagues. Dr. Jamsranjav Baasansuren (GIO-CGER-NIES) gave a presentation on KSA with the focus on Tier 1 quantitative approach. The participants performed KSA (level and trend) using sample data prepared for the training.

Wrap-up Session

The session was chaired by Mr. Takahiko Hiraishi (IGES/IPCC) and rapporteur was Ms. Mausami Desai (US EPA).

In this session, the rapporteurs from plenary sessions and working groups provided a summary of the discussions including the findings and recommendations, which was followed by final discussion to conclude the workshop.

The following are the major conclusions of this workshop.

• Measurability, Reportability, and Verifiability

The participants reaffirmed the importance of improving national GHG inventories to meet the requirements under the UNFCCC. In addition, taking note of the recent international discussion and agreement such as the Bali Action Plan and the Kobe Initiative of the G8 Environmental Ministers Meeting, the participants agreed on the importance of inventory-related data collection to pursue "measurability, reportability, and verifiability (MRV)". They also shared the view that all countries including non-Annex I countries should be encouraged to make efforts to accurately estimate

GHG emissions at a macro level (i.e., national inventory) as well as at micro levels (e.g., at corporate, plant and household levels).

• Promotion of International Cooperation

It was recognized that there was a need to promote information exchange and collaborative relationship among donor countries (i.e., Japan, USA and European countries) in order to effectively support the countries in Asia in improving their GHG inventories. Some participants pointed out that networking the existing networks in different regions would be useful, and also that collaboration between regional programmes should be encouraged. In this context, the participants welcomed the on-going cooperation between WGIA and the SEA Project. They encouraged the WGIA secretariat to further enhance this complementary and mutually-beneficial cooperation.

• Uncertainty Assessment

Many participants noted the importance of uncertainty assessment in improving the accuracy of GHG inventory, in view of the fact that GHG inventories provide information for developing mitigation policies and monitoring their impacts. The participants agreed that it would be useful for WGIA member countries to implement uncertainty assessment although it is not mandatory for non-Annex I Parties. It was therefore suggested that WGIA member countries voluntarily implement uncertainty analysis for part or whole of the inventory, to the extent possible, and report the results at the next WGIA meeting for further discussion on how to improve their GHG inventories.

• Time Series Estimates and Projection

It was pointed out that time series estimates and projections of GHG emissions/removals were beneficial in developing the mitigation policies and measures, and tracking their results. The participants agreed on the importance of establishing and maintaining institutional arrangements that facilitate time series estimates for GHG inventory. In order to facilitate time series development, case-studies were suggested for WGIA-member countries. Japan expressed its intention to consider supporting these case-studies upon request of the WGIA member countries.

The participants also discussed the future WGIA activities. They stressed the need for continued and enhanced information exchange, and more targeted use of WGIA-online network. Some participants expressed their interest to discuss GHG inventory issues in energy and industrial processes sectors, update or review of country-specific EFs, roster of experts and other ongoing WGIA- network activities at the next WGIA. The need for continued support in training of inventory compliers was recognized. The WGIA secretariat proposed to offer such opportunities again at future meetings, which was

welcomed by participants.

Dr. Yoshifumi Yasuoka, Executive Director of NIES, giving his closing address, thanked all participants for excellent presentations and fruitful discussion.

Working Groups' Discussions

Agriculture Sector

Summary of Discussions

Agriculture sector has accounted for more than 30% of total national GHG emissions in some Asian countries. Rice cultivation is a key category, important in many countries. The following were identified as main gases and sources: CH₄ from enteric fermentation, CH₄ and N₂O from livestock manure management, N₂O from agricultural soils, and so on.

The Agriculture working group discussion was attended by 13 participants, with a mixture of people experts in the field and inventory compilers. The major topics of the discussion in the working group were as follows:

- Strategies to improve reliability of agricultural data
- Current status of and challenges in agriculture sector inventory

GHG emissions measurement from livestock and CH_4 and N_2O EFs from crop fields were reported by Japan. Current status in agriculture sector inventory was reported by Malaysia, Thailand and Vietnam. SEA project reported GHG inventory issues in Southeast Asian countries in agriculture sector, and Japan presented a project for soil carbon.

Some participants were of the opinion that IPCC default values are not suitable for Asian countries in some cases. Since emission types vary depending on things such as climate, livestock species, soils, cultivation period and so on, EF and parameters were needed in some cases to make country-specific or semi-country-specific.

Japan's researchers noted that it is important to maintain or increase soil carbon stocks as a mitigation option, and that this research is also important to estimate removals/emissions and to develop inventory methods.

International collaboration as WGIA is important to share information, but WGIA meetings are held only once a year. Therefore, it was recommended that countries exchange information using tools such as websites and mailing lists, which will also help make WGIA meetings more fruitful.

It was pointed out that intra-national collaboration including experts and inventory compilers in each country is important to develop good national inventory and national research projects.

As the results of the presentations and the discussion, getting reliable data to improve EF and AD were identified as key issues. Participants noted three steps to improve methods of obtaining reliable data. One method is to search literature such as scientific

CGER-I087-2009, CGER/NIES

papers and national statistics. Another is to hold field experiments, a method which is advisable for EF and AD as the data is various and location specific. The third such method is to modify IPCC default values to local-specific values by using literature review and field experiments if necessary.

The importance of collaboration was described as another factor in obtaining reliable data. Studies for EF and AD in a country can be extended and collaborated on with other countries in Asia. International collaboration to exchange information is important. Furthermore, it is important to enhance intra-national collaboration, since close cooperation between inventory researchers and compilers in the country was deemed crucial to successful improvement of national GHG inventories. Also, to compiling methodologies and data from WGIA countries in relation to GHG inventory is necessary in order to ascertain the situations in other similar countries.

Suggestions and Recommendations from the Working Group

The following activities were recommended for the next WGIA meeting. First, country presentation on specific EF developments is recommended. It is helpful for other countries when developing EFs for their agriculture sector. Furthermore, exchanging and checking inventory information for the agriculture sectors of each country by all WGIA participants is recommended. It will also be a practice to develop country-specific EFs. The following were requested for long-term work on WGIA:

- 1. Discussion of soil carbon inventory
- 2. Consideration of sustainable agriculture production related to GHG inventory
- 3. Enhancement of international collaboration

For (1), soil carbon inventory is associated with a cross-cutting issue with LULUCF sector. Ordinarily, when land use changes from forest to agricultural land, soil carbon gradually reduces via the decomposition of organic matter. But when compost continues to be deposited on agricultural land, a part of the organic carbon accumulates, and soil carbon increases. It is relevant also with (2), to consider sustainable agriculture production. It is related to adaptation, which is an important element of climate change. Furthermore, (3) means not only WGIA meetings, but also information exchange through web pages or mailing lists of WGIA.

Land Use, Land-Use Change and Forestry (LULUCF) Sector

Summary of Discussions

The LULUCF working group discussion was attended by participants from Cambodia, India, Japan, Korea, Mongolia and the Philippines. The objectives of this discussion were:

- To share countries' experiences with remote sensing, the GIS platform, and modeling in the LULUCF sector,
- To examine the effectiveness of these tools for estimating emissions and removals in the sector.

The discussion started with four presentations by three countries: India, Japan and the Philippines. These presentations were made in order to help improve understanding of the effectiveness of remote sensing, the GIS platform, and modeling in the LULUCF sector. Following the presentations, participants discussed ideas with respect to their effectiveness for improving GHG inventories in the LULUCF sector in Asia.

Suggestions and Recommendations from the Working Group

1. Effectiveness of Remote Sensing and the GIS platform

Remote sensing and the GIS platform are useful for estimating emissions and removals in the LULUCF sector, specifically when groundtruthing data are insufficient. In order to rectify the problem of insufficient groundtruthing data, remote sensing is a key tool because it provides nationwide land cover data.

Although it is difficult for remote sensing to convert land cover data to land use categories, experiences in India and the Philippines reveal that integrating remote sensing data on the GIS platform can overcome this difficulty. GIS-based models help improve the estimates of above-ground biomass in the Philippines, and integration of remote sensing data on a GIS-based platform provides improved stratification of land categories in India. Therefore, remote sensing on the GIS platform along with the groundtruthing of permanent plots is key for developing a good GHG inventory for this sector.

2. Modeling: Suggestions for organizing a training session on the tier 3 models

Use of models such as CENTURY may help develop databases of five carbon pools: above ground biomass, below ground biomass, litter, dead wood, and soil. Specifically, using models to calculate carbon stock changes in soils is effective. Carbon stock changes in dead organic matter (litter and dead wood) and soil are affected by climatic, geological and ecological conditions as well as by human land-use activities; the complexity of the interactions amongst these conditions and activities makes it difficult to calculate carbon stock changes. However, models enable complex calculations.

For example, India applies CENTURY and RothC models to calculate carbon stock changes in soil. Similarly, Japan modifies the CENTURY model so as to adapt it to Japan's specific circumstances, and applies the adapted model (CENTURY-jfos) for

calculating carbon stock changes in dead organic matter and soils.

However, many countries participating in WGIA are unfamiliar with the use of models. Practical training would help aid in understanding model operation and identifying input data necessary for the operation. A training session on the use of the CENTURY model is recommended in order to take advantage of the fact that at least two participating countries are able to share their experiences of using it with the other countries.

3. Necessity of Sharing Countries' Experiences

The LULUCF sector is key for most of the countries invited to WGIA6, and there still remain issues that hinder preparation of the inventory. The issues are lack of data/information on:

- forest and other land use definitions
- land stratification
- biomass expansion factors
- volume assessments
- forest density
- root to shoot ratio

In order to deal with these issues, it is recommended that as many countries as possible provide information about their experiences with them during the next WGIA.. Countries may present their experiences taking into consideration any relevant discussions, including the results of the expert meeting on the LULUCF sector held by the IPCC.

Waste Sector

Summary of Discussions

The waste working group discussion was attended by participants from China, Japan, Korea, Malaysia and Mongolia. The major topics of the discussion in the working group were as follows:

- Use of surrogate data in emission estimation
- Analysis of carbon flow in waste streams
- Strategy to improve reliability of waste data

The participants heard presentations on the reliability and properties of solid waste management data, use of surrogate data in emission estimation in China, Japan's experiences with improving GHG inventory of waste sector, and Malaysia's experiences with preparing waste sector GHG inventory for SNC with a focus on emission estimation.

Landfilling of waste is a main solid waste disposal practice in Asian countries. A lack of detailed and reliable activity data/information on solid waste management for emission estimation is a major constraint in preparing and developing the inventory. The use of surrogate data is one short-term solution to the problems of insufficient activity data. For example, use of data on non-agriculture population, gross domestic product (GDP), city area, urban population, number of cities, and GDP per capita in estimation of amount of municipal solid waste (MSW) generated. However, development of waste statistics is essential in improving the inventory.

Recycling policy and informal recycling activities affect the waste stream as well as waste composition. Therefore, identification of country-specific waste streams and carbon flow is important in improving the accuracy, transparency, and completeness of waste sector inventory.

Because the development of accurate GHG inventory takes considerable time and effort, early, planned improvement of the inventory is important. For example, Japan's waste sector inventory has been revised 3 times between 1999 and 2006.

Suggestions and Recommendations from the Working Group

The group highlighted the need to enhance information/experience sharing through WGIA-online network, and collaboration with SWGA on development of data collection format for Asian countries which can be used to communicate with statistical agencies or data suppliers regarding data needs. The group suggested approaches given four levels of data collection systems: no data, not enough data, poor quality data and good quality data. The participants agreed that identification of country-specific waste streams and composition is important in addressing data constraints and improving data collection. The participants recognized the need for improved communication between data users and data suppliers.

The participants expressed their interest in discussing wastewater related issues, including methane emissions from wastewater.

GHG Inventory Working Group

Summary of Discussions

The GHG Inventory working group session was chaired by Mr. Thy Sum (Ministry of Environment, Cambodia) and reported on by Dr. Simon Eggleston (TSU-NGGIP-IPCC). Representatives from the Philippines, Korea, Japan and Singapore were present. The objectives of the working group discussion were:

• To discuss generic issues and strategies for mainstreaming inventory work

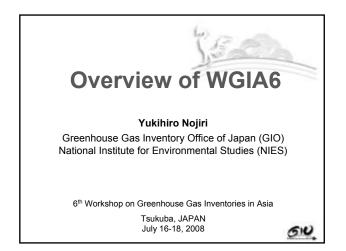
• To develop information exchange materials on GHG inventory

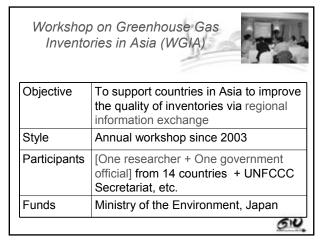
The major topics of the discussion in the working group were as follows:

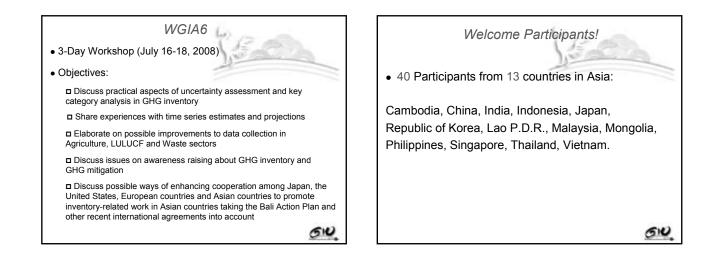
- Developing a template on communication with policy makers and how to share information
- Compiling a list of regional experts/institutions as human resources
- Holding inventory compiler training programs in association with a UNFCCC training course
- Performing uncertainty analysis at least for key categories as a case study
- Encouraging case studies by some countries to develop time series

Current experiences in raising awareness about GHG inventory and climate change in this working group were reported from the Philippines, Korea, Japan and Singapore.

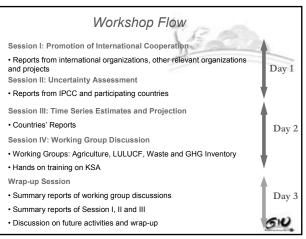
The group dealt with raising awareness about GHG inventory, possible applications of inventory data, and promotion of information exchange. Limited human resources in inventory preparation is a major constraint in preparing and developing inventory in Asian countries. The participants recognized the need to develop a roster of regional experts and relevant institutions, and an inventory compiler training programme perhaps in association with a UNFCCC training course. It was noted that the WGIA could serve as a forum to evaluate/compare member countries' inventories on a voluntary basis.

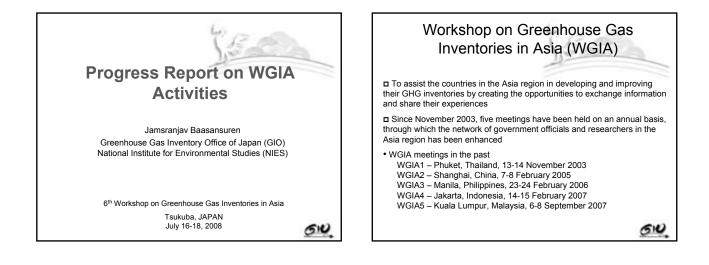

Suggestions and Recommendations from the Working Group


The participants highlighted the importance of raising awareness about GHG inventory in a wide range of stakeholders. They noted that information on awareness-raising activities in WGIA member countries could be exchanged through the WGIA-online network. It was suggested that the WGIA and the SEA project should cooperate to develop a template on communicating with policy makers.

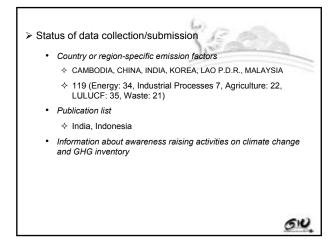

Furthermore, WGIA encourages case studies by some countries to develop time series and uncertainty analysis. This session closed with the suggestion that the WGIA participating countries should be encouraged to perform uncertainty analysis at least for key categories and to report their results at the WGIA7.

Presentations


Proceedings of the 6th Workshop on Greenhouse Gas Inventories in Asia (WGIA6) CGER-I087-2009, CGER/NIES



		4	2006	2	007	2	800	2	009
UNFCCC	/KP	SB24	COP12/ MOP2	SB26	COP13/ MOP3	SB28	COP14/ MOP4	SB30	COP15/ MOP5
IPCC	•	200	06 GL		EFD	в			•
WGI	4		lippines GIA3	<wc< td=""><td>nesia IA4 Malaysia WGIA5</td><td></td><td>Japan VGIA6</td><td></td><td>TBD</td></wc<>	nesia IA4 Malaysia WGIA5		Japan VGIA6		TBD
						G8 ii	Japan		
Other events	SEA	Proje	ct		•		•		•
	SW	GA			•		•		•
SEA Project: Management SWGA: Impr	Syste	ems in §	Southeast As	sia					-



Major Activities Share countries efforts and practices Identify common issues and possible solutions

- WGIA activity report "Greenhouse Gas Inventory Development in Asia -Experiences from Workshops on Greenhouse Gas Inventories in Asia"
- WGIA online-network to promote further exchange of information and experiences in preparation of SNC
 - WGIA website: <u>http://www-gio.nies.go.jp/wwd/wgia/wgiaindex-j.html</u>

WGIA Online-Network Activities Discussion of WGIA topics To develop the contents of the workshop most relevant to its participants Sharing of useful information on GHG inventory and climate change Data collection and compilation To facilitate further exchange of experiences/information in the preparation of the SNC and promote information dissemination Country or region-specific emission factors that were used in GHG inventories in INC as well as newly developed EFs since the submission of INC List of experts' publication related with climate change issues and GHG inventory Information about awareness raising activities related to climate change and GHG inventory in WGIA-participating countries (one of the needs identified in WGIA5)

nventory	Source Category	Gas	Description	Value	Unit	Source of Data
Sector Energy	IA - Fuel Combustion Activities	CO ₂	Emission factor for combustion of Crude oil	20.0	tC/TJ	Measurements by Korea Institute of Petroleum Quality and Korea Polytechnic University
Energy	1A - Fuel Combustion Activities	CO ₂	Emission factor for combustion of Gasoline	19.7	tC/TJ	Measurements by Korea Institute of Petroleum Quality and Korea Polytechnic University
Energy	1A - Fuel Combustion Activities	CO ₂	Emission factor for combustion of Kerosene	19.5	tC/TJ	Measurements by Korea Institute of Petroleum Quality and Korea Polytechnic University
Energy	1A - Fuel Combustion Activities	CO2	Emission factor for combustion of Heating oil	19.5	tC/TJ	Measurements by Korea Institute of Petroleum Quality and Korea Polytechnic University
Energy	1A - Fuel Combustion Activities	CO_2	Emission factor for combustion of Diesel	19.8	tC/TJ	Measurements by Korea Institute of Petroleum Quality and Korea Polytechnic University

A bits of experts' publication related with climate change discusses and CHG investions.
 A bit of experts' publication related with climate change discusses.
 A bit of experts' publication related with climate change discusses.
 A bit of experts' publication related with climate change discusses.
 A bit of experts' publication related with climate change discusses.
 A bit of experts' publication related with climate change discusses.
 A bit of experts' publication related with climate change discusses.
 A bit of experts' publication related with climate change discusses.
 A bit of experts' publication related with climate sea numbers of the related and the related and numbers of the related and the related and numbers of the related and n

Cool Earth Promotion Programme (Jan 2008) Ministry of the Environment **Future Estimation** (Business as Usual) Global CO2 <Mid-term Goals> emission <Long-term Goals> Importance of Measurement "Post-Kyoto Framework JAPAN's GOAL Peak out global GHG emissions for Global GHG reduction within the next 10-20 years Reducing 60-80% emissions by 2050 "In Pursuit of Japan as a Low Society" (June 2008) 40 Kotaro Kawamata GLOBAL GOAL Halving emissions Ministry of the Environment, Japan by 2050 Cool Earth 50" (May 2007) International Environ ent Cooperation Accelerate improvement of global energy efficiency Cool Earth Partnership 2018~2028 2050 Present

G8 Hokkaido Toyako Summit (July 2008)

Environment and Climate Change

"Long-term Goals"

 We seek to share with all Parties to the UNFCCC the vision of, and together with them to consider and adopt in the UNFCCC negotiations, the goal of achieving at least <u>50%</u> reduction of global emissions by 2050.

"Mid-term Goals"

- We acknowledge our leadership role and each of us will implement <u>ambitious economy-wide mid-term goals</u> in order to achieve absolute emissions reductions.
- All major economies will need to commit to meaningful mitigation actions.

Developing countries' contributions are necessary for global reduction.

Measurable, Reportable and Verifiable Actions

Bali Action Plan (Dec 2007)

1. (b) (ii) Nationally appropriate mitigation actions by <u>developing country Parties</u> in the context of sustainable development, supported and enabled by technology, financing and capacity-building, in a measurable, reportable and verifiable manner.

Declaration of Leaders Meeting of Major Economies (May 2008)

10. To enable the full, effective, and sustained implementation of the Convention between now and 2012, we will <u>"Intensify our efforts without delay within</u> <u>existing fora to improve effective greenhouse gas</u> <u>measurement."</u>

G8 Environment Ministers Meeting (May 2008)

Chair's Summary

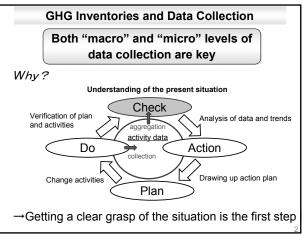
"It was noted that setting up and running <u>GHG inventories in</u> <u>developing countries</u> is of fundamental importance and G8 countries should consider supporting capacity building in developing countries for the collection and provision of data."

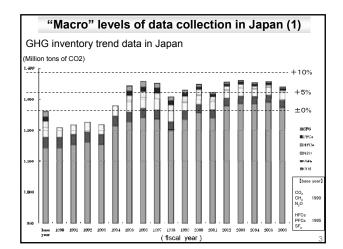
"Kobe Initiative"

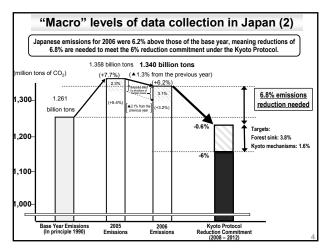
- Aiming at holding meetings together with the outreach countries.
- 1. International research network on low-carbon societies
- 2. Analysis on bottom-up sectoral mitigation potentials
- 3. Promotion of co-benefits among relevant policies
- <u>Capacity building support for developing countries on</u> inventories and data collection (MRV: Measurability, <u>Reportability</u>, and Verifiability)
- \rightarrow This workshop is held as the first meeting of Kobe Initiative.

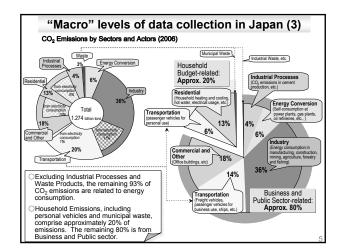
GHG Inventories and Data Collection

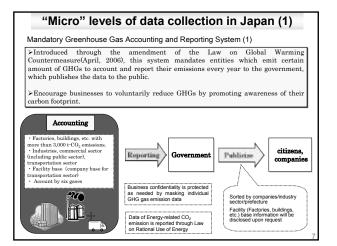
Both "macro" and "micro" levels of data collection are key

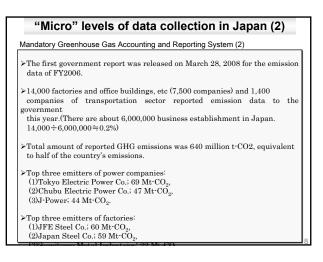

Macro: GHG inventories in national level


- National communication for UNFCCC
- Main theme for today's workshop


Micro: Emission data in facility level

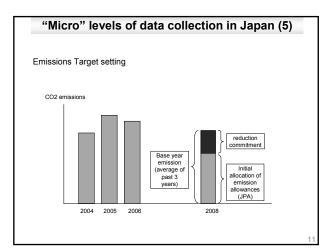

- IEA (Indicator setting)
- APP Task Force (Reduction potential, indicator)





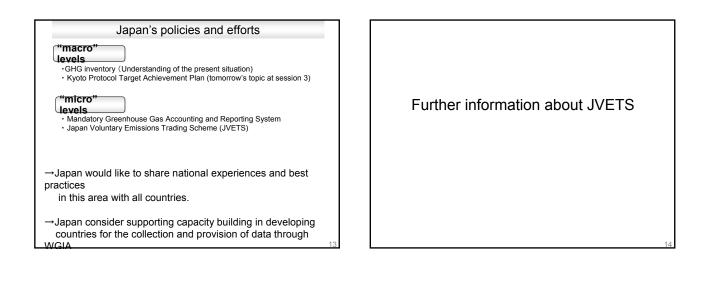
Trends in CO ₂ Emissions from Energy by S	ectors a	and the T	argets	for 2010	• •
nits: million tons of CO ₂					
	1990	Change form 1990	2006	Reduction Rate to meet Target	Targets ^(*) for 2010
Industrial Sector (Factories, etc.)	482	-4.6%	460	-6.7%~ -7.6%	424~428
Transportation Sector (Vehicles, Ships, etc.)	217	+16.7%	254	-4.8%~ -6.4%	240~243
Commercial and Other Sector (Office Buildings, etc.)	164	+39,5%	229	-11.6% ~13.0%	208~210
Residential Sector	127	+30.0%	166	-19.1% ~21.5%	138~141
Energy Conversion Sector	68	+13.9%	77	-16.2%	66

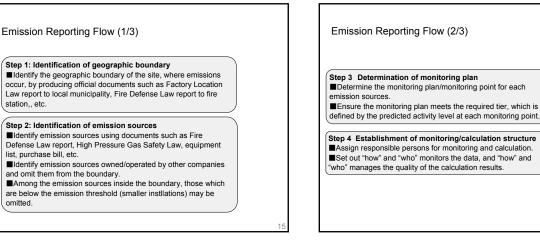
"Micro" levels of data collection in Japan (3)

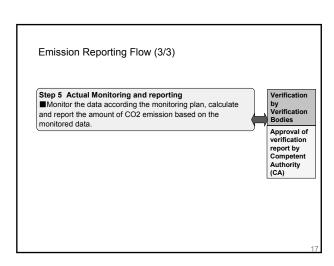

Aims of Japan Voluntary Emissions Trading Scheme (JVETS)

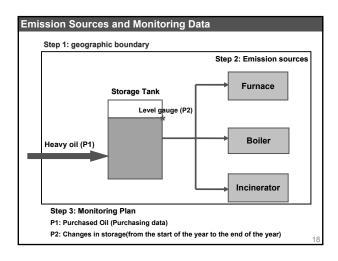
- JVETS started in 2005
- Over 200 participants (incl. steal, paper&pulp, ceramics, glass, car, chemical industries).
- · The aims of JVETS are:
 - To accumulate knowledge and experience in domestic emissions trading scheme.
 - To learn how to manage the scheme efficiently ensuring the quality/accuracy of emission data.

"Micro" levels of data collection in Japan (4)

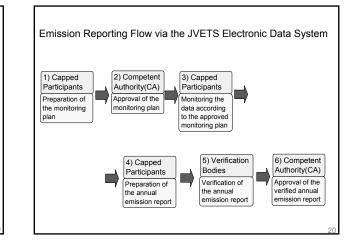

JVETS Rules and Guidelines

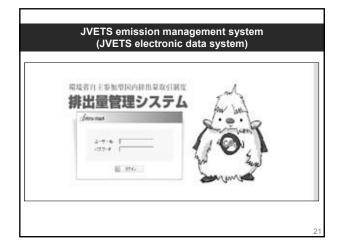

- "Operational rules"
- "Monitoring method/plan form"
- "Emission reporting format"
- "JVETS Monitoring and Reporting Guideline" (JVETS MRG)
 Published on Feb. 2007, recently revised to Version 2.0
 Defines specific accounting and reporting methodologies (monitoring patterns, monitoring points, Tier approach, etc.)
- "JVETS Verification Guideline"
 - Published on Mar. 31, 2007, to be revised on May, 2008 (version 2.0)
 Defines specific verification methodologies (verification opinions, materiality, uncertainty, sampling methods, etc.)

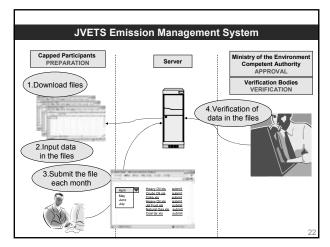


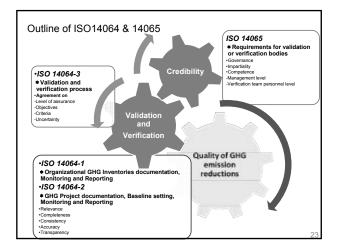


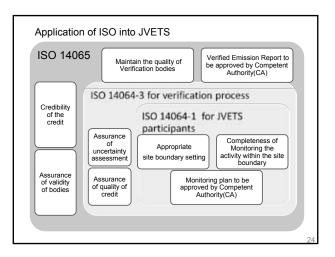
Rules/guidelines are revised as necessary (learning by doing)


Approval of monitoring plan by Competent Authority (CA) (prior to the


commitment year)


JVETS is site-based: Why?


Existing law scheme can be fully utilized to minimize the burden of data collection:


- Law for Geographical Conditions of a Factory Location
 The geographic boundary of any factory must be submitted to local municipality based on the law.
- <u>Fire Defense Law</u>
- The location of the combustible installations (which are normally CO2 emission sources) must be submitted to fire station based on the law.
 Measurement Law
 - Amount of commercial energy inflow/outflow the site (which is boundary under JVETS) must be measured precisely by meters authorized by the law.

ISO		JVETS
standards	Relevant guidelines	Comments
14064-1	Monitoring and Reporting Guideline	Determined specific accounting and reporting methodologies (monitoring patterns, monitoring points, Tier systems, etc.)
14064-2	-	To be prepared?
14064–3	Verification Guideline	Determined specific verification methodologies (verification opinions, materiality, uncertainty, sampling methods, etc.)
14065	Accreditation criteria (draft)	*Provide detailed explanations for impartiality and quality control system
		*Define how far to be documented or recorded
		*Provide competence of verifiers
14066	Competence criteria for verifiers (idea)	To be prepared?

Why JVETS takes ISOs into account?

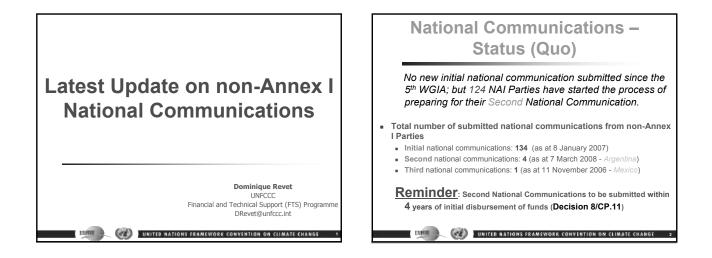
٦

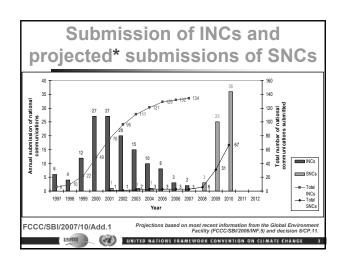
 $\ensuremath{\mathsf{ISOs}}$ can be one of the strong candidates for the international $\ensuremath{\mathsf{ETS}}$ linkage platform.

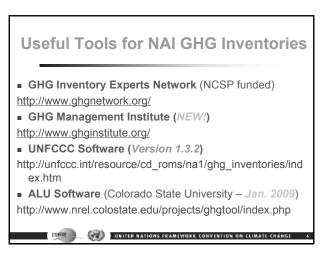
Iowance/credit -> Standardized quality of allowance/credit is necessary for any ETSs.	allowance/credit -> Standardized quality of allowance/credit is necessary for any ETSs. ISO market ISO14064 and 14065 have been implemented.	Topic	Reasons
any ETSs. SO market ISO14064 and 14065 have been implemented.	ISO market ISO14064 and 14065 have been implemented. -> Conformity with ISO is beneficial for JVETS when	Quality of	*Individual ETSs are seeking for linking.
	-> Conformity with ISO is beneficial for JVETS when	allowance/credit	
-> Conformity with ISO is beneficial for JVETS when		ISO market	ISO14064 and 14065 have been implemented.

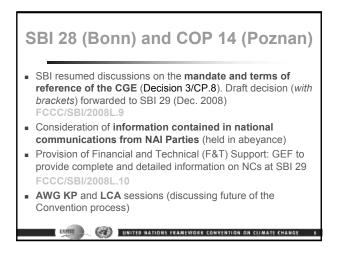
Future Challenges

- To establish highly qualified JVETS in conformity with global standards and to enable its operational costs to the bare minimum.
 improve the emission management system to a more simple and easy-to-use one.
- 1. Implement "Pilot Programme" to be accredited as ISO14065 Verification bodies for two organizations in FY 2008.
- 2. Develop a simple and efficient verification system maintaining its quality level. (achieve good quality and low cost)


For much further information:


• "JVETS Monitoring and Reporting Guideline" (English version) can be downloaded at


 $\underline{http://www.env.go.jp/earth/ondanka/det/emission_gl/monitoringrep-en.pdf}$


Contact: YASUSHI_NINOMIYA@env.go.jp

Deputy Director Office of Market Mechanisms Ministry of the Environment, Japan

NAI Newsletter

I INFIT

```
http://unfccc.int/national_reports/non-
annex_i_natcom/nai_newsletter/items/354.p
hp
```

 NAI Update <u>http://unfccc.int/national_reports/non-</u> annex i natcom/nai update/items/347.php

UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE

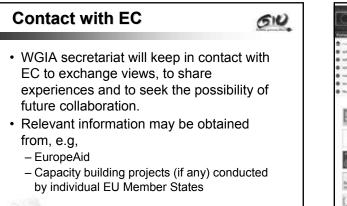
GHG Data Interface and AI GHG Inventory Review Training

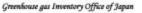
Improved GHG Data Interface
 http://unfccc.int/ghg_data/items/3800.php

 Annex I GHG Inventories review Training <u>http://unfccc.int/national_reports/annex_i_ghg_inv</u> <u>entories/inventory_review_training/items/2763.p</u> <u>hp</u> (*Mr Aizawa*)

UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE

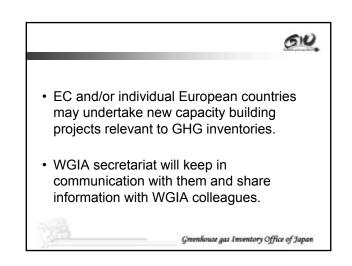
Concluding Remarks


- Hope everybody will make good use of this information and share it with appropriate experts so the *networking* is effective.
- Need your *feedback* on issues relating to your national communications, in general, and your GHG inventories in particular.


INITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE

• We are here to help you!

I INFI



For example ...

- TACIS "Technical Aid to the Commonwealth of Independent States", e.g.,
 - Tacis Regional Action Programme 2002 Technical assistance to Ukraine and Belarus with respect to their Global Climate Change commitments
 - Tacis Regional Action Programme 2002 Technical assistance to Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan with respect to its Global Climate Change commitments
 - TACIS 2002 Russia Action Programme Institutional Support to Kyoto Protocol Implementation (started in June 2005).
- Lessons useful to WGIA may be learnt from these projects in the past.

```
Greenhouse gas Inventory Office of Japan
```


6th Workshop on Greenhouse Gas Inventories in Asia: US programs and efforts on GHG inventories, measurement and reporting

Mausami Desai Climate Change Division U.S. Environmental Protection Agency

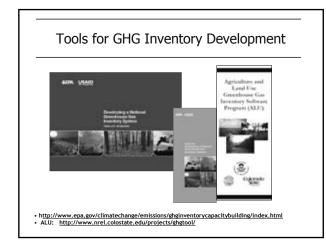
> Tsukuba, Japan July 16-18, 2008

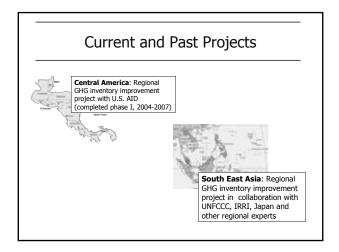
Overview

Inventories

- Past and current work
- Central America, SE Asia, Mexico, China - Synergies with REDD
- Mandatory GHG reporting program
- Questions

Addressing Challenges for Developing Countries

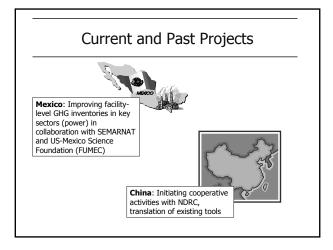

- Technical expertise for GHG inventories already exists in developing countries.
 - Small teams with multiple responsibilities and limited resources;
 - Incomplete or non-existent data;
 - Lack of country-specific emission factors;
 - Insufficient documentation of methods and data sources used in previous inventories; and


 - Difficulties retaining capacity and expertise developed during the preparation of the first National Communications
- · Priorities should be determined by developing countries rather than donors

U.S. EPA Approach to building GHG **Inventory Management Capacity**

Two complementary sets of tools for National GHG inventories:

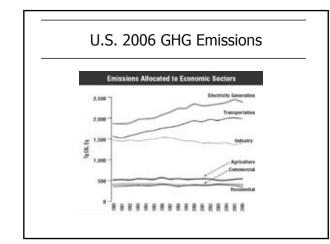
- National System Templates to document and institutionalize the inventory management process.
 – Establishing institutional arrangements, QA/QC, archiving, etc.
- Targeted data collection strategies and software tools to assist developing countries application of higher tier IPCC methods in key sectors
- Next Steps: "Intensify our efforts without delay within existing fora to improve effective greenhouse gas measurement" declaration of Leaders MEETING OF MAJOR ECONOMIES ON ENERGY SECURITY AND CLIMATE CHANGE, July 9, 2008

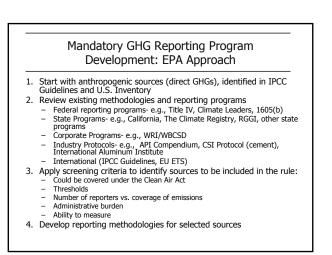


Central America Phase II

· Improve land-use/cover maps in Central America

- Project runs through Sept. 2009
- Collect groundtruthing data to improve GIS maps for Nicaragua, Honduras, Costa Rica, El Salvador and Guatemala.
- Designate IPCC Landuse Categories: Forestland, Cropland, Grassland, Wetland, Settlements, and Other Land
- Process
 - Review existing land-use/cover maps
 - Develop a plan for collecting groundtruthing data
 - Collect groundtruthing data
 - Update maps using groundtruthing data
 - Ensure compatibility of revised maps with ALU Tool


Reducing Emissions from Deforestation and Forest Degradation (REDD)


- Support capacity building and technical assistance to improve data collection, monitoring and reporting of emissions from deforestation and forest degradation (COP-13 decision, Bali)
- Technical program of work underway workshop in Tokyo (June 2008)
- GHG Inventory data and expertise can be applied to development of REDD activities
- The ALU tool can be used for:
 - estimating national or regional baseline for evaluating REDD $\ensuremath{\mathsf{Projects}}$
- facilitating REDD calculations with region-specific C factors Data improvements and capacity-building achieved through REDD can also improve national GHG inventories

Mandatory GHG Reporting Program Development

Mandate

- Funding from 2008 Consolidated Appropriations Act
- Legal authority: Clean Air Act Sections 114 and 208
- Directions
- Economy-wide Upstream AND downstream
- Above 'appropriate thresholds'
- Very ambitious schedule
- Proposed rule within 9 months (September, 2008)
- Final rule within 18 months (June, 2009)
 First reporting? For year 2010 emissions at the earliest. Status
- US EPA Administrator committed to meeting schedule Technical staff are very busy...

• For more information: - www.epa.gov/climatechange - www.state.gov/g/oes/climate/ Contact information: Mausami Desai Climate Change Division U.S. Environmental Protection Agency Email: desai.mausami@epa.gov

Regional Capacity Building Project for Sustainable National Greenhouse Gas Inventory Management Systems in Southeast Asia (SEA Project)

The 6th Workshop of GHG Inventories in Asia (WGIA6) 16-18 July 2008, Tsukuba, Japar

> Leandro Buendia Project Coordinator

Background

□ Collaborative scoping meeting for sustainable national ghg inventory management systems in SEA, 11-13 June 2007, Manila

Common problems in SEA:

- Iack of local or country-specific EF and appropriate AD
- * inadequate database management system
- difficulty in sustaining inventory system (team)
- * lack of capacity for inventory management
- * key category analysis not implemented (mostly)
- need for sharing information/experience
- *Lack of financial and human resources

Project Title: Regional capacity building for sustainable national greenhouse gas inventory management systems in Southeast Asia (SEA Project)

Proponent/Lead Agency: UNFCCC

Collaborating Institutions/Partners:

- US- Environmental Protection Agency (US-EPA)
- Colorado State University (CSU)
 Workshop on GHG Inventories in Asia (WGIA (GIO/NIES))
- International Rice Research Institute (IRRI)

- Participating Countries:
 - 1. Cambodia 2. Indonesia 3. Lao P.D.R. 4. Malaysia
- 5. Philippines 6. Singapore 7. Thailand 8. Viet Nam

Project Duration: 3 years (2007 - 2010)

Funding Source:

- US Government - UNECCC (in-kind, etc.)
- WGIA/GIO/NIES (in-kind, etc.)
- IRRI (in-kind)
- Participating countries (in-kind)

Project Objectives

Overall: To strengthen the capacity of SEA countries to improve the quality of their national GHG inventory for the development of sustainable inventory management systems

Project Objectives


Specifically:

- 1. To strengthen the institutional arrangement, its functions, and operations of managing national GHG inventories;
- 2. To enhance technical capacity of designated personnel in each sector (special attention to Agriculture and LULUCF);
- 3. To improve national methodologies, AD and EF through regional networkina:
- To support the preparation of SNC and subsequent NCs to 4. UNFCCC; and
- 5. To develop sustainable inventory management systems in SEA.

Project Components

- Component 1: Improving National Inventory Management Systems
- Component 2: Comprehensive multi-tier GHG software for Agriculture and LULUCF (SEAALU software)
- Component 3: Targeted improvements to LULUCF sector (Forest land)
- Component 4: Targeted improvements to Agriculture sector

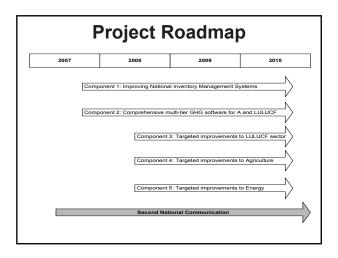
Component 5: Targeted improvements to Energy sector

Templates	Description
1. Key Category Analysis (KCA)	- first step in documenting NIMS - most important sources as focus of improvement efforts.
2. Institutional Arrangement (IA)	assess and document the strengths and weaknesses ensure continuity and integrity of the inventory promote institutionalization of the inventory process facilitate prioritization of future improvements.
3. Source-by-Source Background Document (SBS)	- document and report the origin of methodologies, AD, EF - future reference for each source
4. Quality Assurance and Quality Control (QA/QC)	 guides to establish a cost-effective QA/QC program improve transparency, consistency, comparability, completeness, and confidence
5. Archiving System (AS)	collection of records and where records are kept appropriate and systematic archiving of all compilation national inventory must be transparent and reproducible foundation for development of subsequent inventories
6. National Inventory Improvement Plan (NIIP)	- priorities for future CB based on needs identified in 5 templates - serves as an official national road map for the national inventory

Stand Mark Provide Scanding Standing Scanding Stand Mark Francisco Scanding Standing Scanding Stand Mark Francisco Scanding Standing Scanding Stand Mark Francisco Scanding Standing Scanding Standing Mark Francisco Scanding Standing Scanding Standing Mark Francisco Scanding Standing Scanding Standing Mark Standing Mark Standing Scanding Standing Mark Standing Mark Standing Mark	Greenhou	me to the Agriculture and L se Gas Inventory Tool (Pro	
Andre Learner II fanne 1 dagen Sander Learner II fanne 1 dagen S		Paraginas bartinas C. Landra antinaganas halain C. Landra Asako C. Langtasta C. Langtasta C. Januar Table Searchine C. Januar Table Searchine	C Dig Factor Rangelow D Denset and Hanak Rangelow D The Mangelow D The Mangelow D The Sector Distribution of the Sector D Mindle Rest Manual
Name Camp Name France MARM Gamme (Arange) (Data) () Data) (Data) () Data) (Data) Gamme (Arange) (Data) () Data) (Data) () Data) (Data) Gamme (Arange) (Data) () Data) (Data) () Data) (Data) Gamme (Arange (Arange)) () Gamme (Arange (Arange)) () Data) (Data) Gamme (Arange (Arange)) () Gamme (Arange (Arange)) () Gamme (Arange) Gamme (Arange (Arange)) () Gamme (Arange (Arange)) () Gamme (Arange) Gamme (Arange (Arange)) () Gamme (Arange (Arange)) () Gamme (Arange) Gamme (Arange (Arange)) () Gamme (Arange (Arange)) () Gamme (Arange) Gamme (Arange (Arange)) () Gamme (Arange) () Gamme (Arange) Gamme (Arange (Arange)) () Gamme (Arange) () Gamme (Arange) Gamme (Arange) () Gamme (Arange) <td< td=""><td></td><td>and fraction</td><td></td></td<>		and fraction	
	· Farent Roomer	Compression Compression	Incl C Tomo Makes C Tomo Makes C Tomo Makes C Tomo Macalitat C Tomo Macalitat C Tomo Makes C Tomo Chains

"Kick-off" Workshop of the Regional Capacity Building Project for Sustainable National Greenhouse Gas Inventory Management Systems in Southeast Asia

> 21-23 April 2008 Singapore


Templates Accomplishmenta/Plans 1. Key Category Analysis (KCA) - Each country presented preliminary KCA; need to check initial findings 2. Institutional Arrangement (A) - Already reported in the scoping meeting in June 2007; need to continue improving IA with template guidance 3. Source-by-Source Background Document (SBS) - Each country presented SBS documentation of (one) key category; need to continue/complete for other key categories 4. Quality Assurance and Quality Control (QA/QC) - Templates provided for use; follow up activity as part of the ALU software in-country training in early 2009 5. Archiving System (AS) - Templates provided for use; follow up activity as part of the ALU software in-country training in early 2009 6. National Inventory Improvement Plan (NIIP) - Templates provided for use; follow up activity as part of the ALU software in-country training in early 2009

Component 1: Progress and Plans

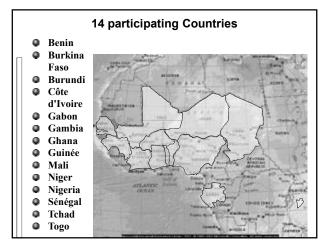
		Rank (l means highe	st level of contri	bution)	
Country	CH ₄ enteric fermentati on	CH ₄ rice cultivation	N ₂ O agricultur al soils	CO ₂ manufacturi ng and construction	CO2 mobile combustio n	CO ₂ energy industries
Cambodia	1	2	4	NA	NA	NA
Indonesia	5	3	NA	2	4	1
Lao PDR	QA	QA	QA	QA	QA	QA
Malaysia	NA	NA	NA	4	2	1
Philippines	6	3	5	4	2	1
Singapore	-	-	-	-	-	-
Thailand	6	2	7	4	3	1
Viet Nam	4	1	2	3	6	5
TOTAL	22	11	18	17	17	9

Component 2: Progress and Plans

Activity	Target Date
1. Distribute ALU Workbook	April 2008
2. Compiling activity data for all primary and secondary data	July – December 2008
3. Distribute ALU Software	January 2009
4. In-country ALU software training and workshop	January - June 2009
5. Participate in WGIA meeting	Q3 2009
6. Wrap-up Workshop	Q1 2010
7. Participate in WGIA Meeting	Q3 2010

Issues	Component 3 (LULUCF)	Component 4 (Agriculture)	Component 5 (Energy)
Common issues on emission factor (EF) and activity data (AD) that need to be addressed	 - EF for biomass increment for managed antivecondary forset - Soil CEF (stock change factors i.e. impt, management, land use) - Reference soil C stock (from soil survey, literatures, etc.) - need for CIS/RS data for SEA countries to improve AD 	- rice cultivation - how to categorize water regime for rice (AD) - FF and AD (related to water mgt. and amount of fentilizer input), NJO emissions from Crophand, soil C from crophand (soil category is broad) - erop residue ratio for use in biomass buming of (RG in inventory - enteric formentation: enhanced characterization - need local IFF for manure management for different AWMS	 reference approach vs. sectoral approach; how to reduce the gass between the two approaches
Specific issues on EF and AD	 activity data; mostly based on statistical report from FAO, etc. FF (removal factor) only for specific forests (for uncertainty assessment) AD and FF only from plantation forest (data are limited) needb storie data onsoil for soil C estimate; also for belowground Pett fires (flohomsi); AD for fire is not easy, country-specific EF is needed AD for forest type (consistent representation of lund); EF for biomass increment; EF for biomass losses (fuelwood gathering) 		

Issues	Component 3 (LULUCF)	Component 4 (Agriculture)	Component 5 (Energy)
Proposed methodology or approaches	develop mechanism to share resperiences in improving investory (WGIA as a platform for info exchange) e-group to be established (during project durino) - sharing not only EF and AD but also SBS (completed template) - need to be clear in extegorization what EF to ase - collaborate with ICRAF and CIFOR - EF, Intrature review/scoping (Malaysia has some data) - Invite expert to come to country to assist investory complies	 refer to Halea Danhase of IRRI for rice AD based on rice consystems refer to IPCC GPG - countries are encouraged to develop their own entegories - Encourage participating countries to develop EFs using measured data collaborate with IRRI (for rice) and New Zealand LEARN Project (for Iventock) 	 collaborate with institution having, experience, in terms of narrowing the gaps between the reference and the sectoral approaches WGIA has gross calorific value (updated every 5 years by Japan), WGIA to share to SEA Project
Date needed	mid 2009	mid 2009	mid 2009


Some African experiences in GHG inventory preparation

Todd Ngara@UNEP RISOE

- UNEP thru GEF funding assists 22 African countries in the preparation of the 2nd National Communications
- A Senior Task Manager from UNEP Nairobi advises on the quality of the NATCOMS.
- Needless to say, this includes GHG's.
 UNEP facilitates consultants to conduct in-country training sessions on GHG inventory preparation

Experiences from West Africa

I should emphasize that these experiences have been gathered thru both UNEP and UNDP as well as other regional and international organisations in Africa.

LULUCF relevance in the region

- On average in the region, 55% of GHG emissions are from the LULUCF sector
- LULUCF and Agriculture input data have the highest uncertainty
- LULUCF is specially cited for challenges regarding representative and historical activity data collection, and need for additional training on IPCC methods and software

Priorities identified under the regional inventory project

Need to improve emission factors for the following:

- Forest and Grassland Conversion (LULUCF)
- Enteric Fermentation in Domestic Livestock (Agriculture)

Expected regional project results

- · Quality of inventories improved
- Strengthening of ghg inventory institutional framework
- · Long-term comprehensive strategy for inventory preparation
- · Improvement of data collection and management
- Improvement and dissemination of accurate emission factors in the region
- Establishment of a regional network/exchange of information

Expected regional project results(cont'd)

- · Increased the number of trained experts
- Increased stakeholder awareness of climate change
- Establishment of technical peer review system in the region

How do we get to the desired results above?

Thru: Capacity building in regional and national theme-specific workshops as follows:

- 1. GPG (Accra)
- 2. Inventory Process (Niamey)
- 3. EF (Bamako)
- 4. QC/QA (Libreville)
- 5. ALU Software (Banjul)
- 6. Peer Review (Abidjan)

Networking among GHG inventory experts for information sharing

General problems identified by countries

- Most values used in INC are default values from IPCC
 Predominance of informal sector in the sectors e.g.
- energy and industry
- Most data are estimated from old surveys
- Inconsistencies and lack of coherence in data provided by different sources
- Data gaps for time series thru various techniques in the IPCC GIs
- Limited national coverage in some data items
 Lack of forest survey

Specific problems identified in agriculture and LULUCF sectors

- Data format, data are not directly usable for GHG e.g. crop residues
- Seasonal migration of animals
- Accurate biomass estimates
- Fraction of total savanna area burnt annually
- Combustion ratio
- Height and diameter measurements

Addressing some of the key problems:

- Institutional arrangement at national level for data collection
- Capacity building at different levels
- Harmonization of data collection
- · Involvement of technical departments at country level

Addressing some of the key problems

- Use of satellite images, where feasible to improve data gathering in the LULUCF sector
- Development of country-specific EF's
- EF improvement through funding of regional research projects (i.e. burnt areas, methane from rice cultivation, quantity of nitrogen lost by denitrification)

The following slides dwell on notable pecularities from the region i.e.

- LULUCF
- Agriculture
- Regional collaboration
- · Seasonal fires and sub-tropical vegetation

Some resources available used:

Site of number of fires per months or year + biomass World Fire Atlas

http://wfaa-dat.esrin.esa.int/wfa.php http://wfaa-dat.esrin.esa.int/wfa_user_guide.php

User Guide

A user via a web browser can extract ATSR World Fire Atlas fire detection classified data in the following formats: Fires detected overlayed on a map The number of fires detected on a monthly basis The number of fires detected on a yearly basis

Improvements needed:

- · Conversion Coefficients
 - Carbon content of plants
 - C/N Ratio of plants
 - Aboveground biomass and belowground biomass
 - Annual growth rate of forests and savannas
 - Biomass Fraction burnt
 - Biomass Fraction oxidized

Inventory management

- Information system in many countries
- Information technology widely spread (archiving & storage)
- Use of UNFCCC software -need for hands-on training

QA/QC

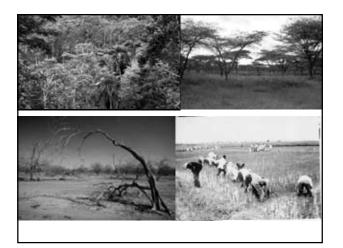
• There is need to institute QA/QC practices in a systematic fashion

Long term strategy to improve GHGI

- Institutional measures are identified
- · Difficulties related to expertise mobility

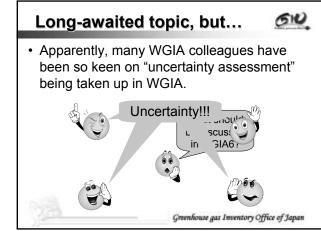
Peer review system

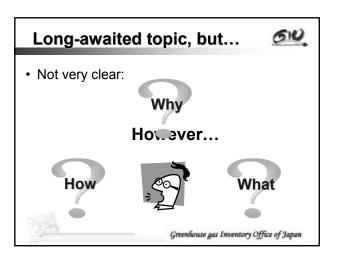
- · Implemented through regional workshop
- More realistic to have it on cross country basis (Not enough of expertise)

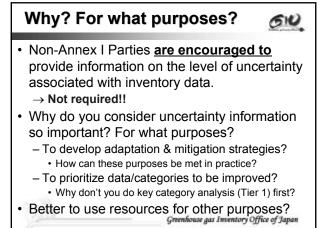

Source: Soil Research Institut	te – CSIR (1999)
Location	Nitrogen Content (%)
Baku - East	1.45
Baku - West	1.12
Bolgatanga	1.30
Bongo	1.53
Kasena-Nankana	1.32
Builsa	1.33
Mean	1.34
CV (%)	28

Carbon content of woody species can be obtained by multiplying woody carbon by 0.5 in the Sudanian sub zone and by 0.8 in the Sahalian sub zone.

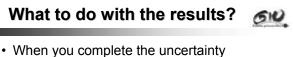
(Breman, H., Kessler, J.J., 1995. Le rôle des ligneux dans les agro-écosystèmes des régions semi-arides) (Caims et al., 1997. Root biomass allocation in the world's uplands forest, Oecologia 111, 1-11)






What have learnt from the West African Project?

- Need for emission factors that reflect better the national circumstances than the IPCC EFDB
- Methodological and AD esp. in the LULUCF need further refinement esp. link to 1996 IPCC GIs
- Regional projects useful in assisting countries to develop National Inventory Systems
- There ought to be increased usage of available tech guidance from the UNFCCC and CGE, NGGIP-IPCC and UNDP-GEF & some Annex I countries i.e. UNFCCC software, satellite imagery for LULUCF, EFDB etc
- Hands-on training on methods for uncertainty management in GHG inventories e.g. sensitivity analysis



How to do it? How useful?

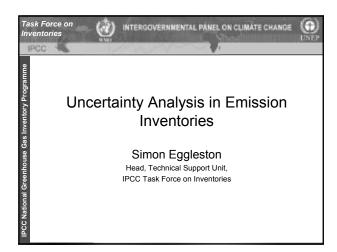
- "Lack of activity data/country-specific EFs"
 = common problems in developing countries
- How can you quantify uncertainties?
 Rely heavily on default uncertainty values as well as expert judgement?
 - → Uncertainty assessment itself may be highly uncertain!!
- How useful is such uncertainty assessment? Does it really meet your purposes?
- Better to use resources for data collection?
 Greenhouse gas Inventory Office of Japan

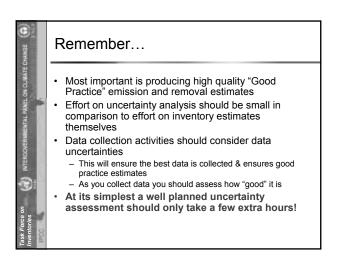
- assessment, what should be the next step?
 - Uncertainty assessment itself is not the goal.
- What steps do you need to take to achieve your ultimate goals?
- If you do not have any clear ideas on what to do with the results, uncertainty assessment will be little use ...
- · Better to use resources for other purposes?

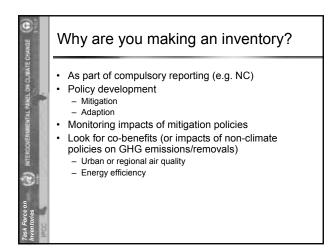
Greenhouse gas Inventory Office of Japan

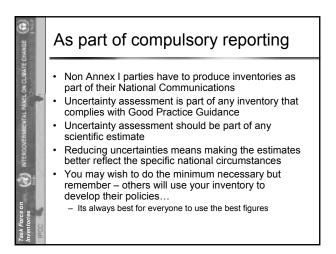
GIU

GIU

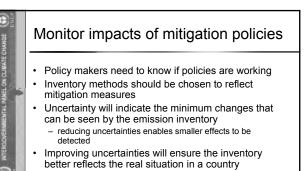

Presentations are going to be made by:

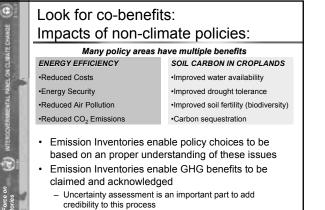

- IPCC, on methodological guidance
- India, on the country's experience
- Korea, on the country's experience Let's discuss and consider together:
 - Why we should do uncertainty assessment;How we can do it;

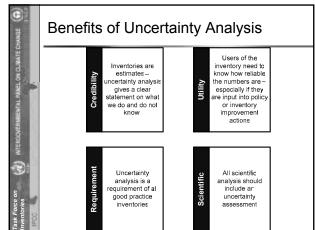

 - What we should do with the results; and
 - How we can cooperate within the WGIA framework?

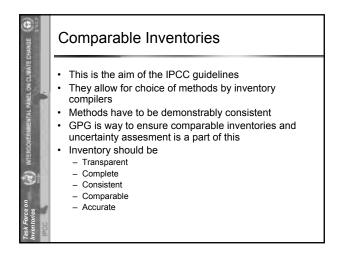

Now, let's start this session!!

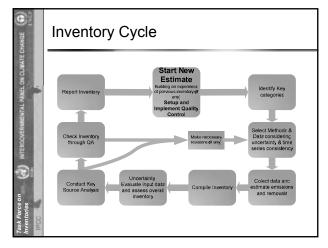
Greenhouse gas Inventory Office of Japan

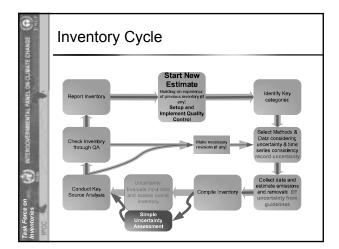


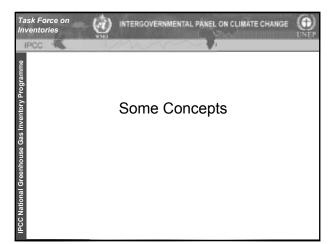


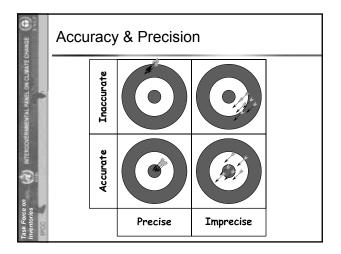


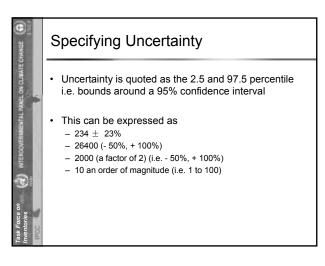


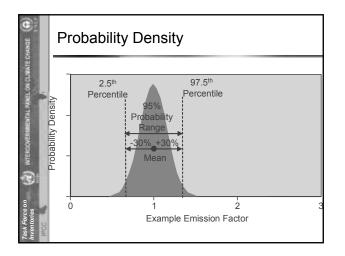

- They can be used to predict the impact of proposed policies
- They are used to chose cost-effective options
- However, the results are only as reliable as the emission inventories uncertainty
- ⇒ Minimising uncertainty improves results
- ⇒ Knowledge of uncertainty tells users the limits of the results (i.e. their uncertainty)

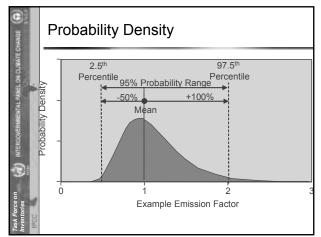


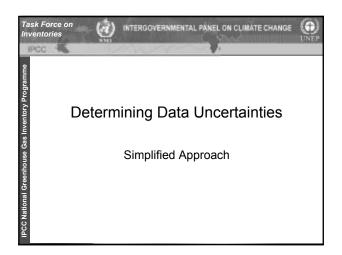


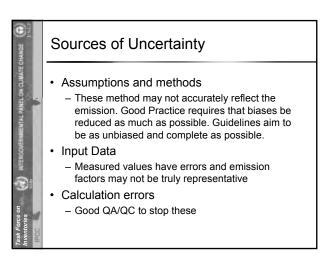


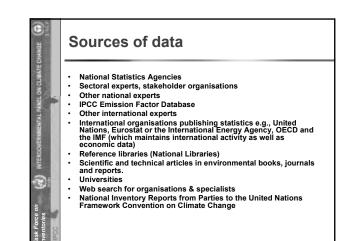






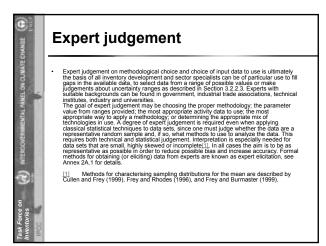


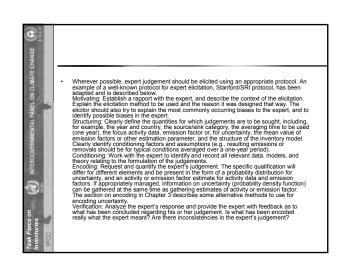




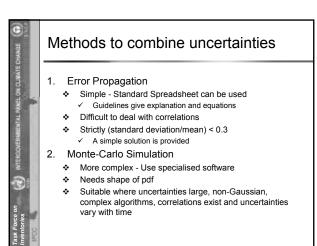

Uncertainties arise in Input Data...

- Lack of data – Use of proxies, extrapolation etc.
- Missing data
- Data not truly representative
- Statistical Random Sampling Error
- Measurement error
- Misreporting

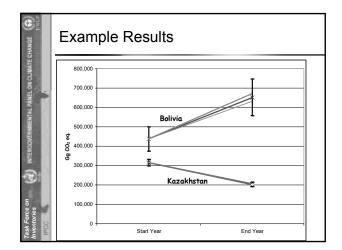

VANES ON CLUX

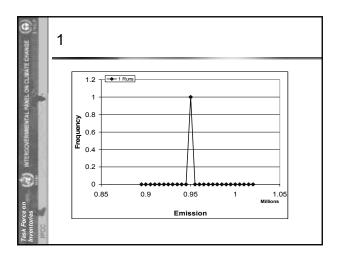

 Consideration of these during data collection phase will minimise errors

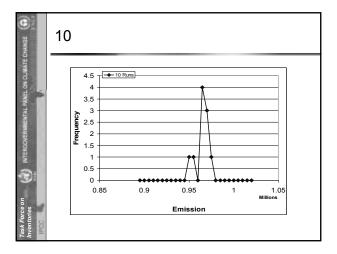


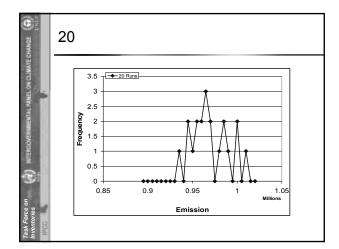


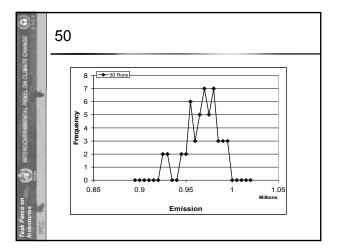
HANDE (1)	Expert Judgement
MERCONSUMENTAL MART ON CLUMATE CHAN	 In many cases empirical data are not available. A practical solution is using well-informed judgements from experts. Possible biases: Availability bias, representativeness bias, anchoring and adjustment bias, motivational bias, managerial
•	bias – Solution: use formal expert elicitation protocols
Task Force on Inventories	Expert elicitation

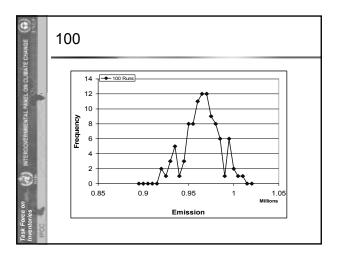


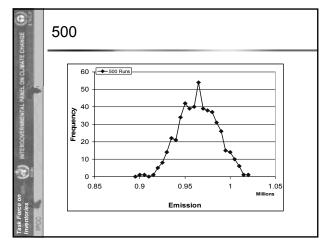

TE CHANGE	Į.	⊦ro	m 2	2006	δ Gι	uide	line	s:				
5	١.,											
					,	PPROACH 1 U	TABLE 3.2 NCERTAINTY C	ALCULATION				
А	В	С	D	E	F	G	Н	I	1	К	L	М
IPCC category	Gas	Base year emissions or removals	Year t emissions or removals	Activity data uncertainty	Emission factor / estimation parameter uncertainty	Combined uncertainty	Contribution to Variance by Category in Year t	Type A sensitivity	Type B sensitivity	Uncertainty in trend in national emissions introduced by emission factor / estimation parameter uncertainty	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions
		Input data	Input data	Input data Note A	Input data Note A	$\sqrt{E^2 + F^2}$	$\frac{(G \bullet D)^2}{\left(\Sigma \; D\right)^2}$	Note B	D ΣC	I•F Note C	J • E • √2 Note D	$K^{2} + L^{2}$
		Gg CO ₂ equivalent	Gg CO ₂ equivalent	%	%	5 35 35 35 35	%	%				
E.g., I.A.I. Energy Industries Fuel I	CO ₂											
E.g., 1.A.I. Energy Industrics Fuel 2	CO2											
Etc												
Total		ΣC	ΣD				ΣH					ΣM
					Percentage uncertainty in total inventory:		√ΣH				Trend uncertainty:	$\sqrt{\Sigma M}$

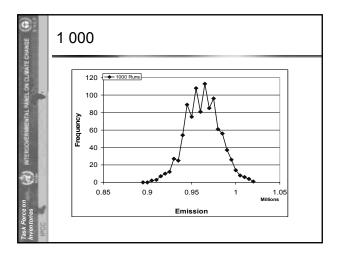

					I uncertainty of							
A	32	с	D	E	F	G	Н	1	3	ĸ	L	М
CC category	Gas	Rasa year	Year r emissions	Activity data	Emission factor /	Combined	Completion to	Type A	Type B	Uncertainty in	Uncertainty in	Uncertainty
		emissions or	or ramovals	ancertainty	estimation	uncertainty	Variance by	satsiävity	sensitivity	trend in national	trend in national	introduced is
		nemovals			parameter		Category in Year			emissions introduced he	emissions introduced by	the trend in national
					uncertainty		1			introduced by emission factor /	introduced by activity data	antional emissions
										emission factor /	activity data	a massions
										December	accesses)	
										uncertainty		
		leout data	laout data	lanut data	Input data	l	KG+D7	New B	D			
						$E^2 + F^2$	0.01		ΣC	I•F	J+E+ 2	K ² +L ²
		Gg CO;	Ge CO-			-	100 11					
		equivalent	equivalent	5	5	5		5	26	26		5
A.1. Energy Industries	CH4	35.5346662	32 9951217	5	25	25.9	0.0	3 205055-01	0.000(0495	0.00050126	0.000342165	1.1927
A.2. Manufacturing Industries and Construction		57.0302899	51,8776096	5	25	25.50	0.0	4.80131E-01	0.000065001	0.00120052	0.001166804	2.80222
A.3. Transport	CH4	817067834	37 1466612	4	25	25.50	0.0	-4.946648-02	0.000118155	-0.0012366	0.000635483	2.2273
A.4. Other Sectors	CH4	1041.24025	428 554682	-	25	25.50	0.0	-0.000772946	0.001363136		0.009638529	0.000
A.5. Other	CH4	330 338228	97 5658895	-	25	25.50	0.0	-0.000367353	0.000310335		0.00712440	8.9157
R1 Solid Fuels	CH4	24867.6834	12364.38	10	25	26.93	27	-0.011678579	0.039328314		0.55618635	0.1645
.B.2. Oil and Natural Gas	CH4		4022.34735	10	25	26.93	0.3	-0.012968733	0.012794183		0.190952021	0.1381
.B. Chemical Industry.	CH4	40.53	37.5018	10	25	26.93	0.0	3.613736-01	0.000119285		0.001685942	3.6619
A Enteric Fermentation		40.53	7346.85	15	20	11.54	1.5	-0.005462727	0.023368679		0.495724577	0.2726
	CH4	14054.9863	7346.85	15	20	31.54	0.0	-8.852455-05	0.0233686.79		0.050944413	0.2/264
.B. Manure Management.	CH4			15	30	31.67	0.0	-3.332456-00 5.3609E-00	0.003815756		0.015346522	0.0007
.C. Rice Cultivation.	CH4	522.9	338.94	10	30			5.3609E-00	0.001075092		0.015246523	
.F. Field Burning of Agricultural Residues.	CH4	64.3314	37.59			36.06	0.0					1.1575
.A. Solid Waste Disposal on Land.	CH4	1959.72	3738.63	15	30	33.54	0.4	0.00797058	0.011991742		0.252261976	0.1193
.B. Wastewater Handling.	CH4	787.08	747.18	15	30	33.54	0.0	0.000763996	0.002376612		0.050415543	0.00504
A.1. Energy Industries	CO2	102607.31	95966.95	5	5	7.07	11.2	0.094441853	0.305249300	0.47220926	2.158438506	4.8818
A.2. Manufacturing Industries and Construction		33991.06	30164.34	5	5	7.07	1.1	0.02615491	0.095945997		0.678440577	0.47743
.A.3. Transport	CO2	23987.07	8406.48	5	5	7.07	0.1	-0.022453294	0.026739124	-0.1122664	0.189074157	0.0483:
A.4. Other Sectors	CO2	44532.52	11784.04	5	5	7.07	0.2	-0.053500014	0.037482383		0.265849472	0.1421
.A.5. Other	CO2	8370.16	4124.19	5	5	7.07	0.0	-0.004052209	0.013118122		0.092759127	0.0090
.B.2. Oil and Natural Gas	CO2	3408.21	5171.49583	10	15	18.03	0.2	0.009456387	0.016449366	0.14184581	0.232629165	0.0742
A. Mineral Products.	CO2		2507.20146	10	15	18.03	0.0	-0.00330953d	0.007974844		0.112781331	0.01591
.B. Chemical Industry.	CO2	1355.56	171.93456	10	15	18.03	0.0	-0.002233954	0.000546885	-0.03350931	0.007734125	0.00111
.C. Metal Production.	CO2	12932.6799	10507.4715	10	15	18.03	0.9	0.006557639	0.033421905	0.10531459	0.47265712	0.2340
A. Changes in Forest and Other Woody Bioma	002	97.19		50	50	94.34	0.0	-0.000199385	0	-0.015950790		0.0002
A. Changes in Forest and Other Woody Bioma	002	-7810.79	-7721.7341	50	50	94.34	12.9	-0.008539363	0.024561100	-0.68314999	1.73673210	3.4829
B. Forest and Grassland Conversion.	CO2	6.26	280.43888	25	75	79.06	0.0	0.00087917	0.000992013	0.06593778	0.031537424	0.0053
A.1. Energy Industries	N2O	388 516902	328.741673	5	50	50.25	0.0	0.000248607	0.001045653	0.01243053	0.007793556	0.0002
A.2. Manufacturing Industries and Construction	N20	112 709781	114 844426	5	50	50.25	0.0	0.000134055	0.000365294	0.006703468	0.002583021	5.1608
A 3 Transport	N20	57 3319301	21 6195922	4	50	50.25	0.0	-4 954255-01	6.87671E-05	-0.00244247	0.00046575	6.2021
A4. Other Sectors	N20	194,497577		ŝ	50	50.25	0.0	-0.000252117	0.000046895	-0.0126058	0.001038693	0.0001
A.5. Other	N20	27.4386549	13.5195061	-	50	50.75	0.0	-1 17655-01	4 1007-02-05		0.000204024	< 1166
.B. Manure Management.	N20	375.1	13.5195061	15	10	11 54	0.0	-0.000135451	0.000631066		0.011266973	0.0001
.b. Mariore Management. .D. Apricultural Solis/2).	N20	25217 694	9798.17	20	20	36.06	10	-0.020551916	0.031165777	-0.60655748	0.881501254	1.1571
.D. Agricultural Solis(2). .F. Field Burning of Agricultural Residues.	N20	25217.694	21 297	20	20	36.06	0.0	1.788126-01	6.7741E-05	0.00053643	0.001916004	3.9585
	N20	24.304 452 B		20	30	36.06	0.0	0.000294175	0.00122269	0.00053643	0.025997172	0.0007:
.B. Wastewater Handling.	N/20	452.6	384.4	13	30	33.54	0.0	0.000294175	0.00122269	0.00552526	0.029457173	0.0007:
eep Blank!												
Total		314388.7626	202771.1719			ΣH	34.6				ΣM	11.46
					Percentage uncert	ainty in total					Trend	1 1657
					avanter:		5.880740472				uncertainty:	

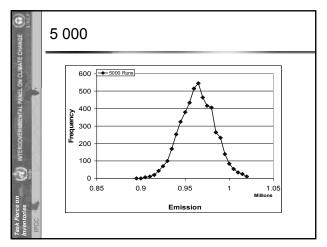


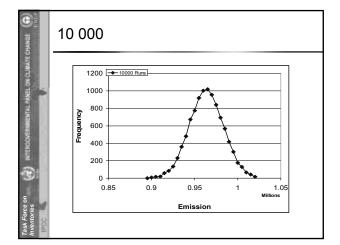

	Kazakhstan			Bolivia			
s	Changes in Forest and Other Woody Biomass Stocks.	CO2		Enteric Fermentation	CH4	95%	
Emissions	Energy Industries	CO2	86%	Forest and Grassland Conversion	N20		
Ē	Agricultural Soils	N2O	1	Agricultural Soils	N20		
"	Solid Fuels	CH4	1	Forest and Grassland Conversion	CO2		
	Energy Industries	CO2		Enteric Fermentation	CH4		
Varience	Manufacturing Industries and Construction	CO2	69%	Agricultural Soils	N2O	729	
/ar	Solid Fuels	CH4		Forest and Grassland	N2O	5	
-	Other Sectors	CO2		Conversion	CO2		

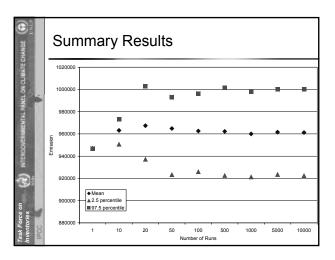


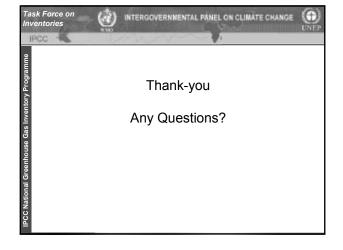


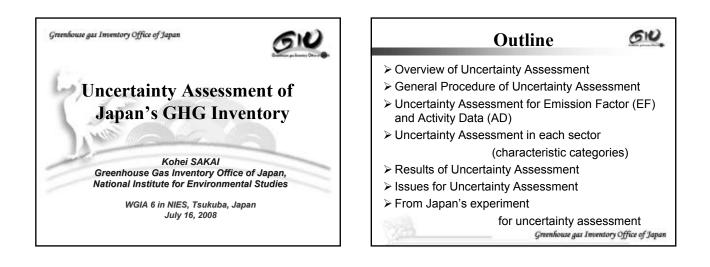


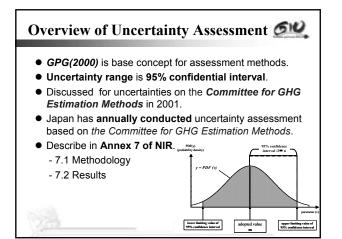


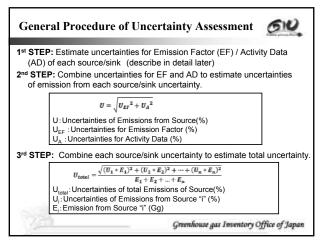


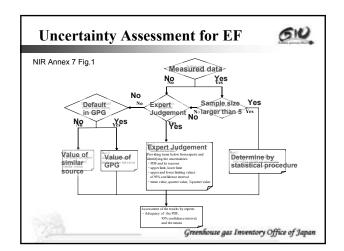


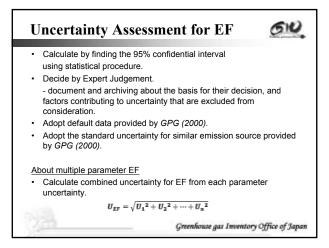

Summary

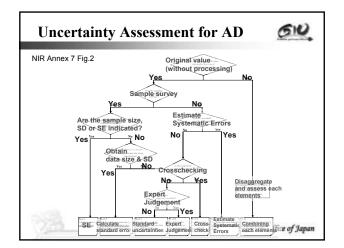

C

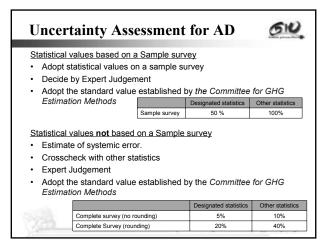

NAME, ON CLIMATE CHANGE

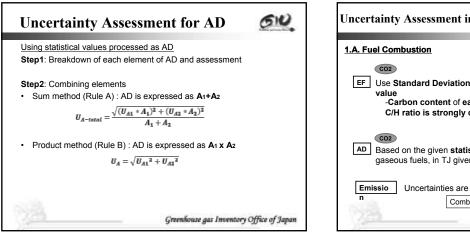

- · Even simple uncertainty estimates give useful information Good QA/QC and careful consideration of methods can reduce uncertainty Assessment of uncertainty in the input parameters should be part of the standard data collection QA/QC •
- •
- There are two approaches to combining uncertainty or a hybrid approach can be used For simple estimates .
- .
 - Uncertainty in activity data assesssed as data collected

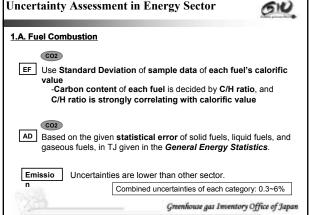

 - Uncertainty in emission factors from guidelines
 Aggregate categories to independent groups of sources/sinks
 Use Approach 1 spreadsheet requires little statistical knowledge

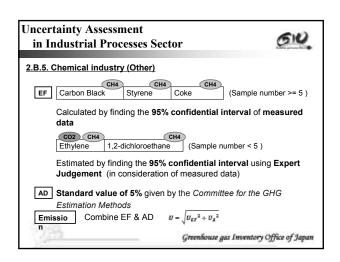


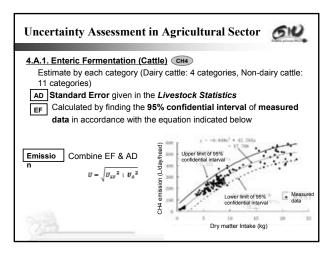


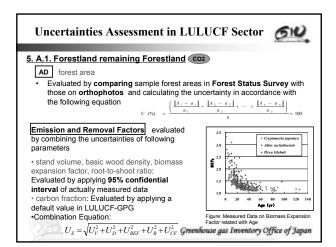


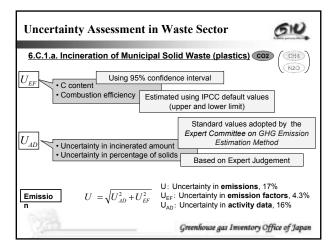


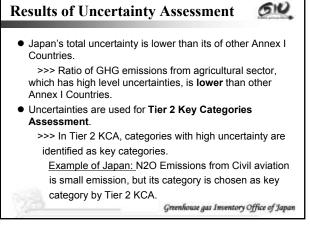


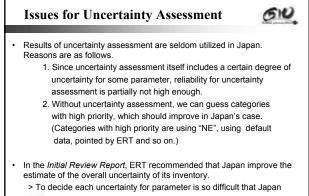


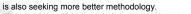


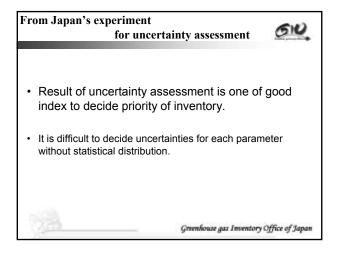


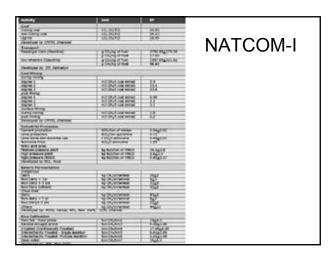









L la serie	at of laws						
Uncerta	inty of Japa <u>App</u>	n's To proxima			ns i	n F Y2006	 Japan's total uncertainty Countries.
IPCC Category	GHGs	Emissio / Remov [Gg CO2	/als	Combined Uncertainty [%]	rank	Combined uncertainty rank as % of total national emissions	>>> Ratio of GHG emi
1A. Fuel Combustion (CO2)	CO2	1,185,874			10	0.68% 3	which has high level unc Annex I Countries.
1A. Fuel Combustion (Stationary:CH4,N2O)	CH4、N2O	5,129	0.4%	30%	2	0.12% 7	
1A. Fuel Combustion (Transport:CH4,N2O)	CH4, N2O	3,238			1	0.91% 1	 Uncertainties are used for Assessment.
1B. Fugitive Emissions from Fuels	CO2、CH4、N2O	462	0.0%	19%	6	0.01% 8	>>> In Tier 2 KCA. cat
2. Industrial Processes (CO2,CH4,N2O)	CO2、CH4、N2O	55,643	4.5%	7%	8	0.33% 5	identified as key cate
2. Industrial Processes (HFCs,PFCs,SF6)	HFCs、PFCs、SF6	17,290	1.4%	20%	5	0.28% 6	Example of Japan:
Solvent	N2O	266	0.0%	5%	9	0.00% 9	
4. Agriculture	CH4, N2O	27,368		26%	3	0.57% 4	is small emission, b
5. LULUCF	CO2、CH4、N2O	-91,501		19%	7	-1.38% 10	
6. Waste Total Emissions	CO2, CH4, N2O (D)	44,811 1,248,580		23% (E) 2%	4	0.81% 2	category by Tier 2 k





Greenhouse gas Inventory Office of Japan

Approach towards reducing uncertainties in GHG estimates · Development of country specific GHG **Uncertainty Assessment:** emission factors India's Experience Updating the same with time _ Evaluating key sources over time and _ Sumana Bhattacharya developing new emission factors NATCOM, MoEF, India • Identifying uncertainties in the steps of GHG estimates itself by using the IPCC guidelines

Moving on to NATCOM - II

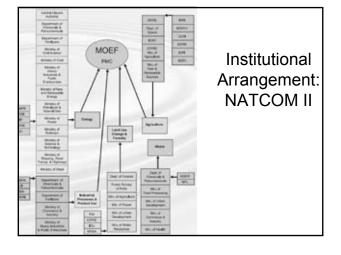
- · Refinement of existing factors
- Development of new emission factors
- Moving towards higher tier estimates for key source categories
- Bridging data gaps identified in NATCOM I
- Launching standard QA/QC procedures for each of the categories

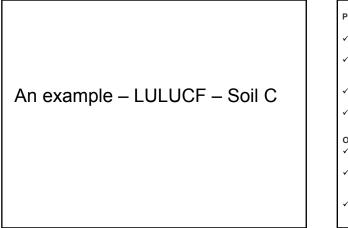
Institut of Institution Institut of Institution	60. 10g	1 sec	Complete Militaria (Car	Canadation addresses 11. addresses 10. (%)	Termel		a 17C	
all the	111017	318	HACT	78.8	Tef	01		
Tamis Prostaning	THE	11.8	Jahant .	+43	Tesl	6.5	8.	
aluter	10075	11.1	8413	743	Tiel .	. D .	- E	
Care Californian	1586	19	3031	403	-Ter 2	65	R	
Compared .	BICAL	1.8100	040248	164	Tell	G1		
Topic pre, from Tuelly	47.000	17	10071100	11.7	Tect		C1	Key Sources
202 Bill Rei pictic 200	+++42	38	100004	112	THE	2.	68	
Integrate to Residential Letter	unr	16	100003	40.0	Teri	5	E	analysis
liman hat he magi	1071	11.	jatient,	- 0.7	. Del	. F	- AD	- ,
the state spings writes	100	- 2.8	1000987	384	THE	2	Ð	
And the second s	1897	- 21	2481712	87	Tell.	55		
Contry copyright is an and the contraction	serts	12	1111520	10.1	Terl			
Kaur Kaupan	101.78	1.0	1131488	893	Test	2	Ð	
Annual a production	14191	12	1144894	41.6	Terl		-C3	
and not Lopicon design and	Lines		Sector.	840	2017		1000	
laister.	3426	42	114118	110	Terl		C8	
TT MARK	- 10	10	14-27	- 27	THE	÷.	and designed in the second	
to we serve by down				117		÷	61	
elazopai teksi kivye Zopose.	11111	10	104518	100	THE	5		
Descript White some			1111997	817	Del	÷-		
Approximation of the second seco	121	14	1117718	101	761	-	-	
Core and preferrer	1980		111114.08	M1	Tract	-	23	
tunes weige	10.0	84	11177	82	280		national in the	
and periods	1215	82	1224177	417	Tecl	1		
histoi Esta Dur	180	81	1235878	813	Ter1	-	63	
New Groupolicity	1501	81	1117174	101	Tec1	+	B	
Desister polaria	74	81	111/013	82.0	Tecl	-	- E	
Cathile president	141	2.0	1111212	101.8	Teri	1	E	
inda a di ann	175	0.0	1122449	201.0	Tm.1	- 2-	E	
Each other and united goal	-		1111140	100.0	Terl	-	and the second second	

Table 1 Key strate analysis of the 1994 GBC issuestory (CD

Segres of emitting	a DC	earlings.	Articides proposed in KNC	Federath	n DC	Proper
Easy ad tenformion infertion	CS .	R	 References of NCV of different types of roal 	 bashquive imple une talest in DX Thermologowar plants is the key rategory within the energy and bunchmarkes some 	Sel	Ties II
Estati Persentation	G	*		2 It is a law company in the apiculase series to In D.C. appropriate activity data was not would be used a a resonant momentum of the sample size fire which an economical wave taken was multi-and and could not be validated through estimates because lack of activity data.	5-1	De II
Robotty (Rel. combustom)	P	Þ	-ant temperature-	-one patherand-	lai	De I
Res Cultivation	cs			This is the second largest GHS maining compary second in the agriculture compared. As the second mark his source is dominantly second to investigate the LTV framework of the second second provider the LTV framework of the second second second second second framework of the second second second second second framework of the second second second second second framework of the second second second second second second second second se	5×1	No rhonge
Transport	G	*	 Conduct survey to apportion the final fast sand in various types of and valuetion. Ration EPs from different kinds of proving and devid threes valueties by acceptoring during cycles. 	Dates the approaches will be used to reconcile the top down, and bettom up maximum estimates from this source	tie t	Tier E
Penintim State Sell	d P		: Development of No EFs from	This is a major senses of NO emission	De I	1.1

		k	different sols	averget ill far congretas.	1.00	her
be ad tail polation	9	-	 Hust local scorement of CO, HP: (scaling tens confiction of hel.): production process) 	It is a first genering water of the screevery in addition to being a surger senses of COL	1-1	E.
Degroen .	Þ	P	out to be tageted	attols taprid-	Tel I	Pie
Domain o brane die	P	P	bait to be tagetail	Den malelle	Tes I	1 ar
and the second	Þ	p	out to be topstal.	Initially set to bey compary	5-1	1
Couner production	8	Ť.	Flat level sciencest of CO, EP i dor to production process	It is a first proving series of the eccuracy in addition to being a super source of CUE eccuration	Tes 1	Der 1
Range concerned in Concerning	P	P	set to be tapeted		Tes I	Fin shange
Marrie	Þ.	p		Manual compensat per firm in a	Tel.	1.
Annomia	P		Determine start level CO.EF	Key composy - and tagend in DK.	le I	Ter I
Land you, Lands on damps and Persons	0	es .	 Desslap last on dange spect Anno longer mild, cales 	A key congrey, and regional in OUC so long in the GPC LULUOF (2001) gualance in the investory existance process.	tet.	ft= 1
Cod uniting	CS .	63	har taystal	rad Lapses	The III	Tie 12
Chi and spheric per-	P		Develop collarooling: The screening face on a regular back on oil and satural go transport, enough, reading and Backing	Through not a last conserve, but the reconservations of cell and noticed gas chosen the highest generalized was to show found had, so address will be puscle to conservation movement of sciencity data.	let I	2-1

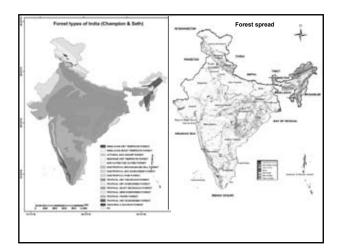

Plan	n	Ing	for reduci	ing uncertai	Int	les
Maximpal Solidi Warte Disperal	l	1	 Arren ye cam MDV passing comparison and handling proton Generat ID for managed and managed landst new 	Lesi chainte milter a annel parmin d'acco ad despri vegentes	Pri	De I
Deserts Vice	P	P	ut upted	ant a lay company	Sel.	Dia Ballion and
Loss store and delotate top	P	D	bart jaugerlands	ant a losy company-	-1	Donge .
Appendixed scope analysis	P	P	ut supial	est e pris multipals	5+1	Dia .
acchertate	65	C5	set topted	not a losy company-	Te I	Dia Manga
Hanna Sarrage	P	P	art mystal	en systemet	-	Cane
ass publics.	P	P	at spiel	en spil undial-	-	No.
lakenid View Katu Face allege periodica	9	P	Classical scalysis of veste some in electric key indication our registed.	Expil pooth of series solution like pape, page beinege etc. an elsey entegory	NI NI	ial a
Annanan production	P	P	ant superior	ana ayea craetas.	at.	20 slumps
Calcula production	P	p	out tegetek	POL 8 PG-C-MERG	-	No.
iela sil tre	P	P	tad lagens	POLY YEAR CONDUCT	Set.	210 stange
Interaction shall	9	p	out lageled	any ayah chatan	241	20

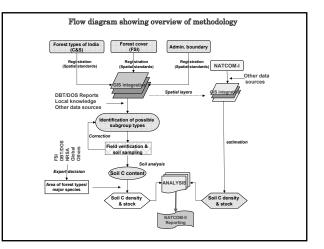

NATCOM-II

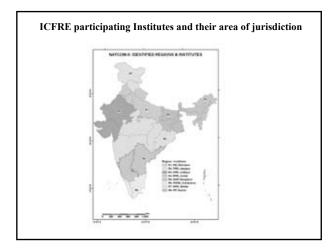
- Improving NCV of coal
- CO2 emission factors from two power plants due to combustion of coal
- CO2 emission factor from an integrated iron and steel plant due to combustion of fuel and the processes itself
- Updating CH4 from Coal mining
- CH4 from transport of oil/natural gas

NATCOM-II

- CH4 from continuously irrigated rice fields
- N2O from agricultural soils
- Improving CH4 EF from enteric fermentation in Livestock
- Soil C from Forests
- CH4 from MSW
- CH4 from Waste water from key industries




Problems to address..


- ✓ Preparation of Forest type and sub-group type map of India (Champion & Seth, 1968)
- Harmonization of different spatial layers of India (forest types, actual forest cover, administrative boundaries and collateral data sources), and assigning them uniform spatial standards
- ✓ Non-existence or localized presence of some of the forest sub-group types and difficulty in locating them
- ✓ Even modern tools like RS and recent published estimates gives only forest types and sub-group type associations/equivalents

Opportunities..

- Preparation of Forest type map and sub-group type details of India in tabular format (Champion & Seth, 1968)
- Harmonization of different spatial layers of India (forest types, actual forest cover, administrative boundaries and collateral data sources) in GIS and assigning them uniform spatial standards
- ✓ Use of FSI and DBT-DOS reports

Region	Name of the Institute	Area coverage	No. of subgroup types	Number of samples (@ 3 per type + from non- forest area)
R1	FRI, DEHRADUN	UA, UP, PUN,HA, ND, Chandigarh	31	33+10=43
R2	TFRI, JABALPUR	MP, MS, OR,CH	17	51+10=61
R3	AFRI, JODHPUR	RA,GU, D&N Haveli, D&Diu	18	54+10=64
R4	RFRI, JORHAT	North East	29	87+12=97
R5	IWST, BANGALORE	KA, AP, GOA	15	45+08=53
R6	IFGTB, COIMBATORE	TN, KE, A&N Is. Pondy,	32	96+10=106
R7	HFRI, SHIMLA	HP, J&K,	16	48+08=58
R8	IFP, RANCHI	BH, JH, WB, Sikkim	13	39+10=49
	Total No. of samples		171	513+78=591

What is given...

- Forest types, sub-groups, sub-group types, C & S code, distribution and dominant species along with the identified institute is supplied to every participating institutes.
- This will be supplemented with any other map available for now or as soon is become available.

Detailed methodology Prepared for :

Sample collection

Storage Analysis and calculation

Inception meeting with Nodal officers from different ICFRE Institutes conducted 9-10 May

Sampling procedure to be uniformally adopted by all teams demonstrated in the field

QA/QC plan developed

Compartment/Villa	ge		Block/T	ehsel		
Division/Distt.		State				
AltitudeAs	pect	Latitude		Longitude	e	
Forest type :		Dominant spe	cies			
		_ Rock out crop (%	%):			
Coarse Fragments						
Tick on appropriate						
		Moderate			Gullied	
		Hill slope Plateau				Valley
c) Moisture :	Wet	Moist Light (25 % surfac		Dry		
	Moderate	e (25-50 % surface	area cove	rage)		
		50 % surface area				
e) Soil depth:	Shallow	(<25 cm.),	Moderat	ely deep (2	5-50)	
		e (50-100)	Deep (>	100 cm)		
Sample Collected I						
Division:						
Date_						
Soil Sample No.: _		_ (Region No./ For			o Replica	ation No.)
		Foe ex.	(R6/ TEG	(1-2)		

Soil Sample Collection Protocol

Most carbon accounting purposes require a volumetric estimate of soil carbon. This requires measures of bulk density and the volumetric proportion of coarse fragments (e.g. gravels).

Existing guidelines (IPPC, 1997) for carbon accounting refer only to the upper 0.30 m. This zone is intended to cover the actively changing soil carbon pool.

SOC Density (t/ha) = Organic Carbon Content (%) * Bulk density * Soil Layer depth * (1- volume fraction of coarse fragments)

While sampling certain points should be kept in mind.

Locate sample site away from roads, houses and construction sites, etc.,

• In a forested area sample should be drawn away from the trunk of the tree or between trees.

• Avoid eroded and locations where large plant material is under decay.

• Always dig a **fresh rectangular pit** and in grass land first clear the top layer and dig the profile.

1. Estimating Rock Outcrop

It is desirable to have a more accurate estimate of the volume of rock within the soil individual. Measure rock outcrop along a series of linear transects. At each transect intercept, record the length of rock surface (>50 mm). The area of rock outcrop is estimated using:

Aro = 100 (Σ r / L)

where Aro is the areal percentage of of rock outcrop, L is the total transect length and r is the length of rock intercepted (m).

Rock outcrop can also be measured using the 10 m grid (100 m^2 area) assuming that the observer is at the middle of the grid. Make schematic sketch of the rock out crop on the grid and estimate the percentage.

2. Estimating Percent Coarse Fragment in the Soil

Percent coarse fragment (>2mm size) in soils will be estimated by morphological examination of soil.

Coarse fragments by volume in layer of 0-30 cm. using the visual estimation of coarse fragments key should be observed.

An area of 10 cm. by 10 cm. (100 cm2) can be visualized in layer covering of coarse fragments.

It is also useful to indicate the size of coarse fragments (CF) by type, as given in table 4b:

Type of coarse fragments and its size

Gravels (G) <u>2 -75 mm;</u> Cobbles (C) <u>75-250 mm;</u> Stones (S) <u>> 250 mm</u> (25 cm).

3. Collection of Samples

In each sampling units, three sampling points will be selected as replicates.

At each point soil sample of 0-30 cm. depth will be collected.

One sample will also be collected in non-forested area (agricultural area) close to the major forest types.

Detailed number of samples, forest sub types and nodal institutes are given in sampling plan with participating institute.

3.1 Soil sample for carbon estimation:

• Forest floor litter of an area of 0.5m x 0.5 m, at sampling point will be removed and a pit of 30 cm wide, 30 cm deep and 50 cm in length will be dug out.

• Soil from three sides of the pit, will be scraped with the help of Kurpee from 0 to 30 cm depth and bulked. Scrap uniform thickness of soil layer from top to bottom (0-30m cm)

• This soil will be mixed thoroughly and removed gravels. Quarter the bulked soil sample and select opposite quarter approximately of 500 gm. Here, coarse fragments can also be approximated.

Keep in a polythene bag and tightly closed with thread.

• A label showing the sampling details should be put in side of polythene bag before closing the bag.

· Proper entry to be made in field note book

3.2 For bulk density estimation by Core sampler

3.3 Storage of the samples

 If numbers of samples are large and not possible to analyze / process immediately after collection from field, then samples collected for soil organic carbon, should be placed in refrigerator or deep freezer.

· Taken out desired numbers of sample and prepare them for estimation.

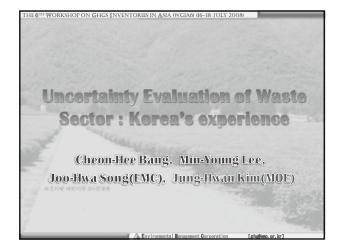
4. Preparation of sample

4.1 Carbon estimation in the laboratory

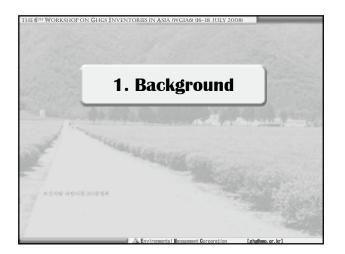
- Open the polythene bag and spread the samples on a brown paper sheet in the laboratory. Let the sample dry at room temperature in the laboratory.
- Avoid direct sun drying or oven drying.
- Marking of the sample (which was given on the label at the time of the collection of sample) should be written on the brown paper sheet to avoid the mixing of the samples.
- After drying the samples, grind it and sieve it through 100 mesh sieve (2 mm sieve). This sieved sample will be used for soil organic carbon estimation.
- 4.2 Analysis

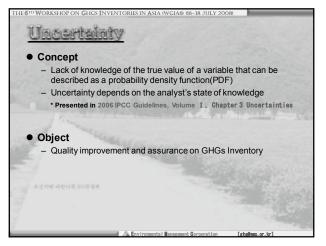
Soil organic carbon will be estimated by standard Walkley & Black method and

Vegetation characteristics of the sample site


Measure 22x22m either side of sample location (Quadrat of 31x31 m=0.1 ha)

Enumerate all tree species > 10 cm dia within the quadrat


For shrubs 5x5 m qudart


For herbs and grasses 1x1 m quadrat

2 Scheme of National GHGs Inventory	- 22
3) U.E in Waste sector	1

ASIA (WGIA6) (16~18 JULY 200

Uncertainty Evaluation

• An essential part of an inventory

- Helps prioritise efforts to improve accuracy
- <u>G</u>uides decisions on methodological choice
- Most inventories and sources are reasonably reliable
- Some sources may be order of magnitude estimates
- <u>Difficult or impossible to quantify and completely characterise all</u> inventory uncertainties
- Pragmatic approach Use best available data and expert judgement
- Reporting
 - Need uncertainties in all parameters used, preferably need PDF as well (activity data and emission factor)
 - These need to be documented, reviewed and used to estimate total inventory uncertainty

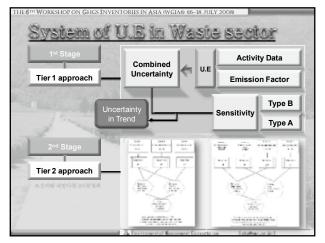
Sources of Evaluation

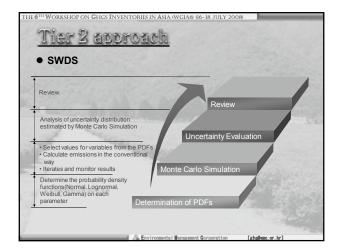
- Measurement errors
- Uncertainties in factors
- Use of Statistics
- Application of emission factors
- Representivity
- Expert Judgement expert elicitation
- Models applicability

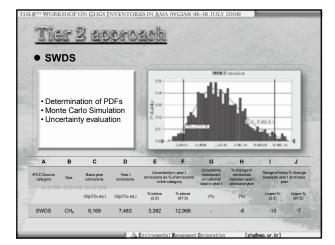
Tier 1 app		355	11	Tasito	Тан автостскита	nan de Raxanen Eur	ena	
	g uncertainties by source category with simplifying ons : Using the error propagation equation in two steps.		Piterlay	10 10 10 10 10 10 10 10 10 10 10 10 10 1	All Balant and	100 100 100 100 100 100 100 100 100 100	Contraction (Notice of Section 2017)	Access Tones Market Access Market Access Mar
Rule	Description		61	A11 A12		· · ·		
A approximation	Used to arrive at the overall uncertainty in national memissions and the trend in national emissions between the base year and the current year.	10	A UR Constant Distant Well Constant Well Constant Constant Sectors Constant Sectors Constant Constant Constant Sectors Constant					
B approximation	Used to combine emission factor and activity data ranges by source category and greenhouse gas.	1	D GLIDO A annu Ander Loci Michae A Barti Annu Annu Lingto Annu	Same Adding Adding	1	202		10
	in IPCC GPG and Uncertainty Management in National Greenhouse Gas a, Chapter 6 Quantifying Uncertainties in Practice		1 200 1					

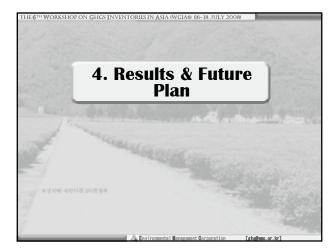
THE 6 TH WORKSHOP ON GHGS INVENTORIES IN ASIA (WGIA6) (16-18 JULY 2008)	
<u>Generic Mathod</u>	
 Tier 2 approach Estimating uncertainties by source category using Monte Carlo analysis (principle) Selecting random values of emission factor and activity data from within their individual probability density functions Calculating the corresponding emission values. Monte Carlo approach's five clearly defined steps 	11 5785 19 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Step 1 Step 2 Step 3 Step 4 Step 5	
Specify source category uncertainties	C. S.
A. Environmental Management Corporation [shafter.or. (r)	20

					Lateration of the second	0.7007050			
Δ	3	2	5	e		5	2	,	
negoty to search	Ca.	200	Maria Mining	formanique y Textinente	the company	The states was land as anti-advector flat	C. Angeler self-care between track webbers per	Rays (Print Interview	ted to per
		chi chi en richt	ingen. menind	laintee Direenaki	Subar alta provati-)	24	24	taur 4 Qd prociti)	100
n (1 de l Prove bilance 1 ani (see.								
ni hiti Evena kalumen Rath	in.								
E =									_
¥				(COLUMN STREET, ST.	TR. Charlow
20144	10-11		14						


Country	Method	Country	Nethod
Austria	Tier 1 / Tier 2	Italy	Tier 1
Belgium	Tier 1	Latvia	Tier 1
Bulgaria	-	Lithuania	Tier 1
Cyprus	-	Luxembourg	Tier 1
Czech Republic	Tier 1	Malta	Tier 1
Denmark	Tier 1	Netherlands	Tier 1
Estonia	Tier 1	Poland	Tier 1
Finland	Tier 1 (LULUCF) /	Portugal	Tier 1 2005
TITTanu	Tier 2 (LULUCF excluded)	Romania	-
France	Tier 1	Slovakia	Tier 1
Germany	Tier 2	Solvenia	Tier 1
Greece	Tier 1	Spain	Tier 1
Hungary	Tier 1	Sweden	Tier 1


Jun.	Collection of Sectoral GHGs emissions
Jul.	Analysis of whole GHGs emissions
Aug.	Making out draft on GHGs inventories
Sept.	Review by Working Group I Review by Working Group I
Oct.	Holding GHGs Inventory Conference
Nov.	Confirmation and publication of GHGs Inventories
Dec.	Discussion on Improvements of Inventories
Jan.	Discussion on Improvements of Methodologies
Feb.	Preparation on submission of GHGs Inventories





101	100	21	130	DADA	1018	ae	lbe							
_	-	_		-				-	inar umu			-		
					-	1.000			Contraction in the			1.11		-
					THE OWNER OF	141		General Street		78.5	1411	COLUMN ST	101980	
141	10000	-99							1071		1.0	A	analyzing 1	
							-	5.00	P1 - 11 - 1	_	-	1.0	147	1.1
			_	15	10 3		<u> </u>	_	-		<u> </u>	· · ·	· ·	
				2.81	See				19.00					
0.54	denid.				1.4.0.1			41.00	8.10		410.1		I	
1101	101004	THE ROOM				10.00	100	.4120.7		114	212	110		
		10.00-25		14.4			1.00	1.10				1100		
	100	Paratica .	4.00	M11	1.100	1.00	2.09	1.00	15	115	1171	140	4.47 ;	- 70
		ine .		12	TANK .	1.000	100	122	174	1.45		210		
		10144	100	18.	10111	1.000	1100	1.00		1.40		140	#10°.	
	100	-22	- 53	38.	- 24,	0.00	0.00	. 1.10	4.20	242	- HE.	- 263	#21j	_ 4
		1000	12	100	100.01	F 1001	1.08	1.10.1	1.00	146	1101	3.45	# 111 -	
		inder .	10h	- 22	- 25	100	100	100	130	140	100	1410	100	- 1
3		de hen	-	100	- 10	1.00	1.00	100		1.41	440	140		
	10.0	1.1.3												
		P 10	6.0.	1011	20.1	1.00	1.00	20114	1.72	110	100	1.00		1
		- 14	100		-883	1.00		-350		1.00				
		105	40.	24.		200	2.00	2211	4.31	040	HEE .	1400	4.5K - 1.07 -	
		the state	100			1.45	1000	1000	4.01	144	100	- 160		
		84 <u> </u>	-		1411	1.000				1.00				-
		No.	10.0	10.1	14.	1000	1000	1.00	8,75	147	A 417 A	1441		- 1
		÷.	84	198.	- 10.0	1000	0.00	1.00	4.27	0.10	800.	2408	+1 F .	- 6
	20.01	CONTRACTOR -	N	10.2 4	10.74	4.001	ALC: N	10.00	111	1.84	85.7	1.85	B 16.	
index in the	2000	1000	100	18.	10.00	2.00		1000		1.47	447.		a	
Secondar.	and the second	and a	-		1000	100	110.00	ALC: NO.						- 5
		1000										1400		
Sec.			-		- 25	1000	2.08	Contract of	1.00	100	110	100		-

Results

Method

- Refer to IPCC GPG 2000 and 2006 IPCC G/L

WORKSHOP ON GHGS INVENTORIES IN ASIA (WGIA6) (16-18 JULY 2008)

Input the uncertainty of activity data and emission factor → Estimate the combined uncertainty
 * by Tier 1 and Tier 2(Monte Carlo simulation) approach

Issues

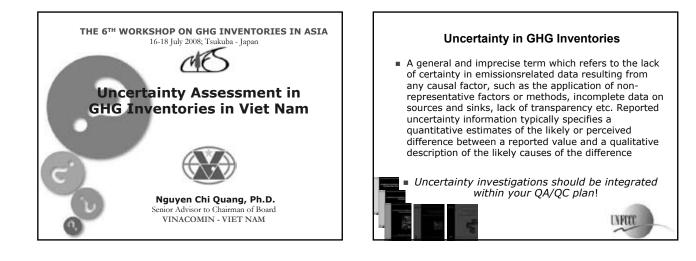
Can't know the uncertainty on GHGs emissions of the whole sectors
 Doesn't have information on Probability Density Functions of emission factor and activity data for applying for Tier 2

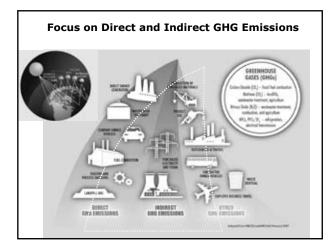
Implications

- For advanced uncertainty evaluation, it is meaningful that we only attempted uncertainty evaluation by Tier 1 and Tier 2

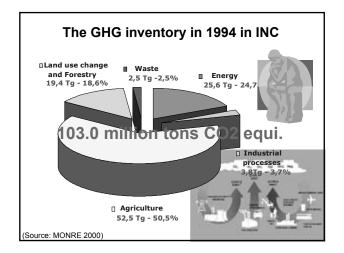
<u>Future Plan</u>

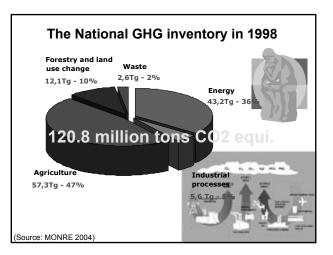
• Improvement on Uncertainty Evaluation in the Tier 2 - Benchmark on the Annex I countries

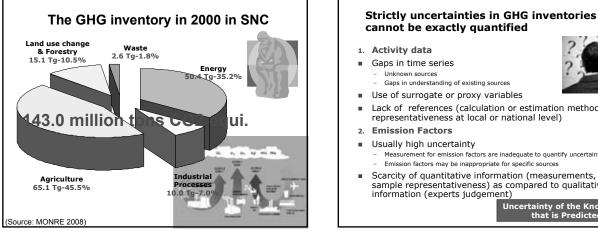

WORKSHOP ON GHGS INVENTORIES IN ASIA (WGIA6) (16~18 JULY 2008)


- Based on the IPCC GPG 2000 or 2006 IPCC G/L

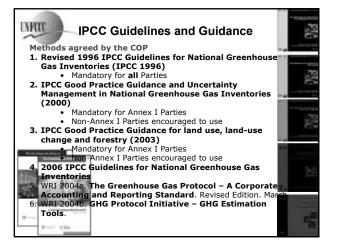

• What we must do,

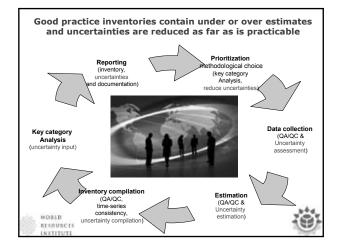

- Development of decision tree on uncertainty
- Decision on estimation method of uncertainty





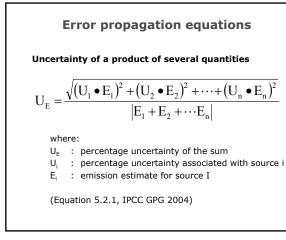
cannot be exactly quantified Use of surrogate or proxy variables Lack of references (calculation or estimation methods, representativeness at local or national level) Measurement for emission factors are inadequate to quantify uncertainties Emission factors may be inappropriate for specific sources Scarcity of quantitative information (measurements, sample representativeness) as compared to qualitative

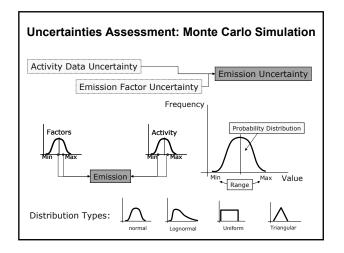

Uncertainty of the Knowledge that is Predicted

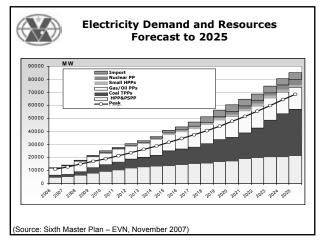

Variability and Uncertainty in GHG Inventories

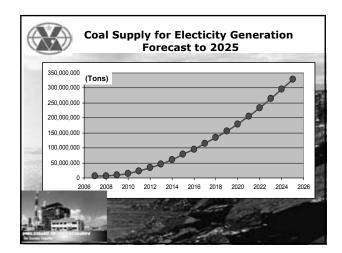
Sources of Uncertainty:

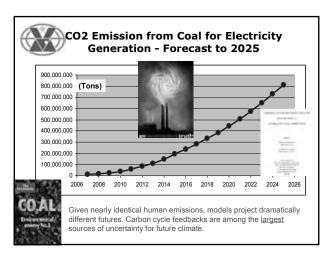
- Random sampling error for a random sample of data
- Measurement errors
- Systematic error (bias, lack of accuracy)
- Random error (imprecision)
- Non-representativeness
 - Not a random sample, leading to bias in mean (e.g., only measured loads not typical of daily operations)
 - Direct monitoring versus infrequent sampling versus
 - estimation, averaging time
 - Omissions
- Surrogate data (analogies with similar sources
- Lack of relevant data, Lack of completeness
- Misreporting or misclassification
- Problem and scenario specification
- Bias and random errors from modeling



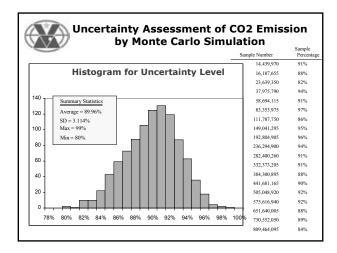

Overview of methods and guidance Approach 1:


- emission sources aggregated up to level similar to IPCC Summary Table 7A
- uncertainties then estimated for these categories
- uncertainties calculated based on error propagation equations
- Provides basis for Key Source analysis
- Approach 2:
 - corresponds to Monte Carlo approach
- Can use software such as @RISK and MS excel spreadsheets
- Combine Monte Carlo and design-based methods to account for
- sampling uncertainty
- input uncertainty
- model uncertainty
- Recommend reading the IPCC Guidelines
 - 'Uncertainties



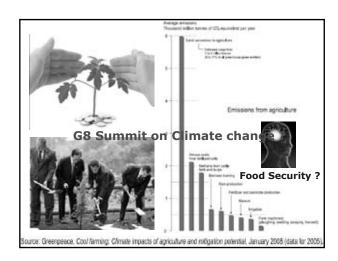

Uncertainty assessment of CO2 Emission by Error Propagation Equations

Emission Sources	GHG Emission (GT)				
Emission Sources	1994	1998	2000		
Energy	25,600.00	43,200.00	50,368.03		
Industrial Processes	3,800.00	5,600.00	10,005.72		
Agriculture	52,450.00	57,300.00	65,090.61		
Land use change and Forestry	19,380.00	12,100.00	15,104.72		
Waste	2,560.00	2,600.00	2,601.08		
Total	103,790.00	120,800.00	143,170.16		
Cummulated Uncertainty	9.10%	9.30%	8.90%		
Irce: MONRE 2000,2004,200					

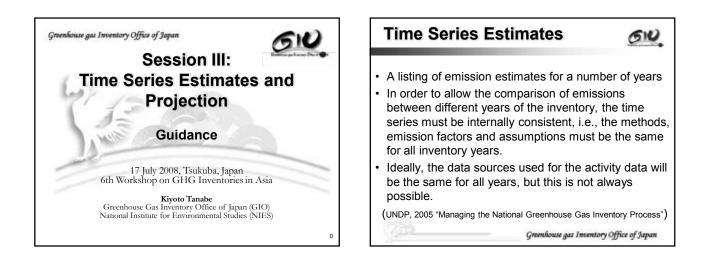


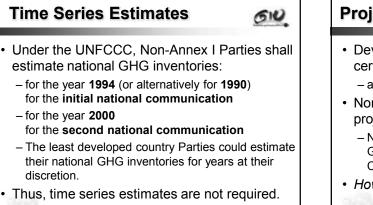
Unce	-	ment of CO2 Emission ical Analysis
Number of values	19.00	9
Sum	5,637,297,240.00	8
Minimum	14,439,970.00	7
Maximum	809,464,095.00	
Range	795,024,125.00	Samples
Mean	296,699,854.70	NO V ISSN
Median	236,294,900.00	2 1.5% 1.5%
First quartile	64,859,080.00	576 576 576 576
Third quartile	489,206,981.30	
Standard error	59,258,864.07	-1e8 0 1e8 2e8 3e8 4e8 5e8 6e8 7e8 8e8 9e GHG Erritssion (Tons)
95% confidence interval	124,502,873.40	
99% confidence interval	170,547,010.80	
Variance	66,720,646,450,000,000 .00	
Average deviation	216,534,572.30	
Standard deviation	258,303,400.00	
Coefficient of variation	0.87	

Conclusions and future prospects


- Uncertainties are not a good measure of inventory quality
- The subjectivity component in uncertainty estimates will probably be reduced through use of the 2006 IPCC Guidelines and better competence of inventory compilers
- Inventory quality needs to be measured using also other indicators (transparency and review reports)
- Uncertainties can be reduced and uncertainty estimates improved by addressing category-specific QA/QC and uncertainties at the data collection step
- Need to develop systematic methods for expert judgments addressing all errors
- Uncertainties are quantified for every submission; Sensitivity analysis is used to guide inventory improvement

Areas for co-operation proposal


- Exchange of information and experiences.Share of information, studies, more uncertainty
- data available within emission inventory guidebook.Clarify approaches for expert judgement to exclude
- subjective approaches and have influence on uncertainty estimates.
- Improve utilisation of analysis results by arranging a course in sensitivity analysis.
- It is possible to assess the uncertainty of national, sector and corporation GHG emission inventories.
- Scenario analysis and sensitivity runs allow to assess this influence and to understand/evaluate it.


Intuitive aspect gains weight when uncertain

Greenhouse gas Inventory Office of Japan

Projection (of GHG emissions) 600

- Development of *future* time series based on certain assumptions
 - appropriate "drivers" and reasonable scenarios
- Non-Annex I Parties are not required to do projections of GHG emissions
 - No mention of "projection" in the UNFCCC Guidelines for Non-Annex I National Communications
- However...

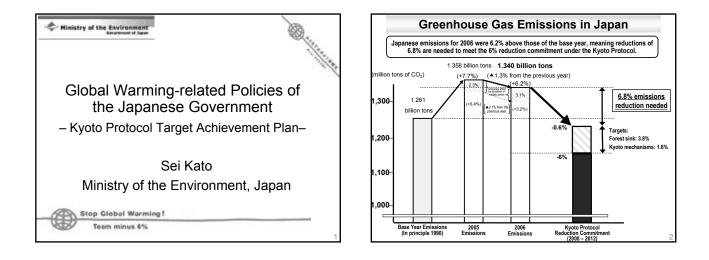
Greenhouse gas Inventory Office of Japan

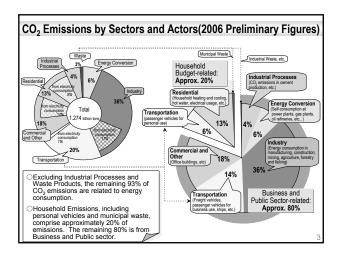
Not required, nevertheless... 600

- Apparently, many WGIA colleagues are interested in "time series" and "projection" being taken up in WGIA.
- Some countries reported time series and/or projections of GHG emissions/removals already in their initial national communications.

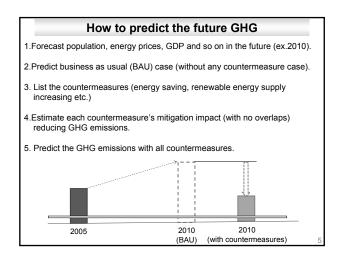
Greenhouse gas Inventory Office of Japan

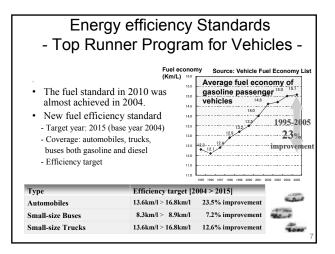
				GIU
Country	Sectors	Gases	Projected year	Time series
Cambodia*	LUCF, Agrriculture, LUCF, Waste	CO ₂	2020	
Indonesia	National and sectoral (Energy, Forestry, Agriculture, Waste)	CO2, CH4, N2O	2025	1990-1994
Korea (NC2)	Energy, Agriculture, LUCF, Waste	CO2, CH4, N2O	2020	1990,1995,1998-2001
Lao*			-	
Malaysia	Energy	CO ₂	2020	
Mongolia	Energy, Agriculture, Forestry	CO2, CH4	2020	1990-1998
Philippines	Energy, Industry, Agriculture, LUCF, Waste (Solid waste, wastewater, human sewage)	CO ₂	2008	
Thailand	Energy, Agriculture, Forestry	CO2, CH4	2020	
Vietnam	Energy, Agriculture, Forestry	CO ₂	2020	

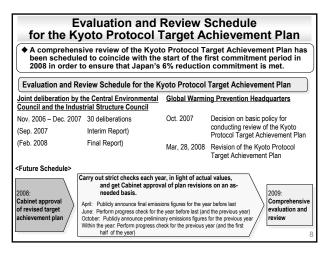

Why...?

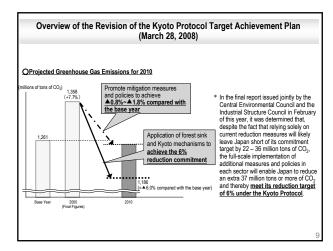

GIU

- To analyze the impact of policies & measures on GHG emissions/removals
 - Development of time series estimates is essential.
- To formulate an appropriate mitigation plan
 - Projections of GHG emissions/removals are necessary.
- High quality time series estimates would lead to high quality projections.
 - Analysis of time series would help selection of appropriate drivers to be used for projections.

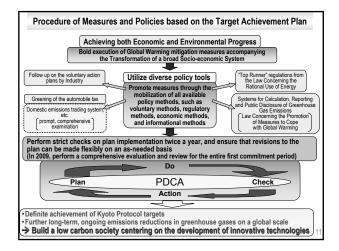

Greenhouse gas Inventory Office of Japan

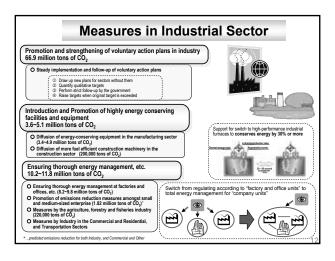


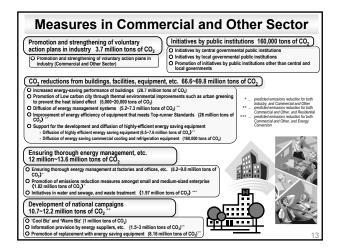

Trends in CO ₂ Emiss Sectors and the					У
Units: million tons of CO ₂	1990	Change form 1990	2006	Reduction Rate to meet Target	Targets ^(*) for 2010
400 -	482	-4.6%	460	-6.7%~ -7.6%	424~428
3CC - (Transportation Sector (Vehicles, Ships, etc.))	217	+16.7%	254	-4.8%~ -6.4%	240~243
200 Commercial and Other Sector (Office Buildings, etc.)	164	+39,5%	229	-11.6% ~13.0%	208~210
Residential Sector	127	+30.0%	166	-19.1% ~21.5%	138~141
Energy Conversion Sector	68	+13,9%	77	-16.2%	66
C 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006	reduction me maximum eff	asures have been es	tablished. Natu only the minimu	ted effect and a minimu rally, the goal is to try ar m effect is achieved, it I Kyoto Protocol.	d achieve the

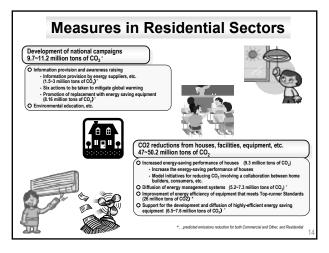


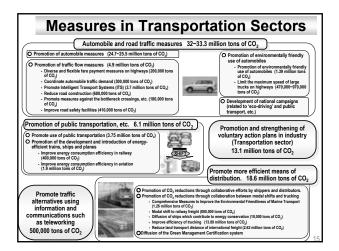
Energy efficiency standards for electric appliances
and automobiles: Top Runner Program

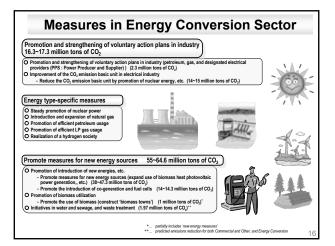

Equipment	Improvement in energy efficiency (Results		
TV sets	25.7% (FY 1997 > FY 2003)		
Video-cassette recorders	73.6% (FY 1997 > FY 2003)		
Air conditioners *	67.8% (FY 1997 > FY 2004)		
Electric refrigerators	55.2% (FY 1998 > FY 2004)		
Electric freezers	29.6% (FY 1998 > FY 2004)		
Gasoline passenger vehicles *	22.8% (FY 1995 > FY 2005)		

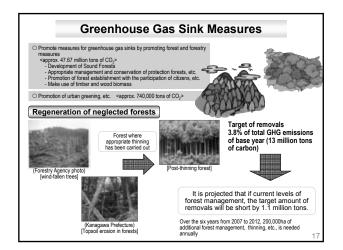


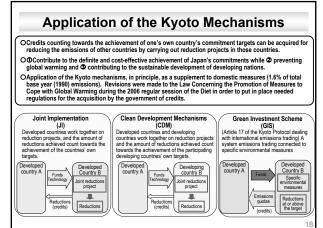


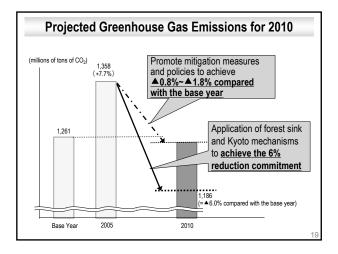


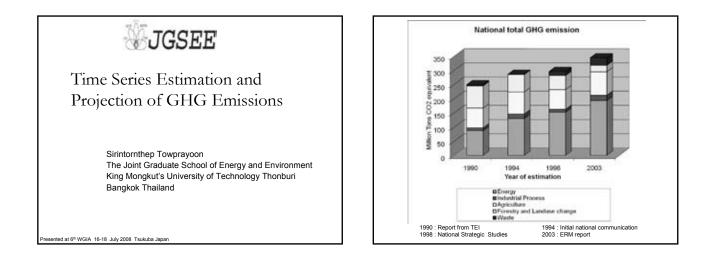

Framework for the Revision of the Kyoto	Protoco	ol Target Ad	chieveme	ent Plan
Measures and Policies for Achieving Targets	Targets o	f Greenhouse Ga	s Emissions a	nd Removals
1. Measures and Policies relating to Greenhouse Gas Emissions Reduction, Removal. etc.			Emissions T	argets for 2010*
(1) Measures and Policies relating to Greenhouse Gas Emissions Reduction [Examples of Primary Additional Measures]			Million tons of CO ₂	Base Year Total Emissions Comparison
 Promotion of voluntary action plans Increased energy-saving performance of houses and buildings 	CO ₃ from Ene	erav	1.076~1.089	+1.3%~+2.3%
Improvement of energy efficiency of equipment that meets Top-runner Standards. etc.	Industr	y	424~428	-4.6%~-4.3%
C Ensuring thorough energy management at factories and offices, etc.	Comme	ercial and Other	208-210	+3.4%-+3.6%
Improvement of automobile fuel efficiency	Reside	ntial	138~141	+0.9%~+1.1%
 Promotion of emissions reduction measures amongst small and medium-sized enterprise 	Transp	ortation	240-243	+1.8%~+2.0%
 Measures for the agriculture, forestry and fisheries, water and sewage, traffic flow, etc. 	Energy	Conversion	66	-0.1%
O Measures for urban greening, waste, and Three Fluorinated Gases (HFCs,	CO ₂ from non	-Energy, CH ₄ , N ₂ O	132	<u>-1.5%</u>
PFCs and SF6), etc. O Promotion introduction of new energy sources	HFCs, PFCs	SF6	31	-1.6%
(2) Greenhouse Gas Sink Measures	Greenhouse	Gas Emissions	1,239~1,252	-1.8%~-0.8%
Oroset management such as tree thinning, promotion of the "Beaudiful Forest Building National Campaign" Cross-sector Policies Oystems for Calculation, Reporting and Public Disclosure of Greenhouse Gas Emissions Obevelopment of national campaigns	minimum establishe effect; hov	et guide for emissions predicted effect fo d. Naturally, the goa wever, even if only th pulated so that it will Protocol.	r reduction me al is to try and ac e minimum effect	asures have been hieve the maximum t is achieved, it has
Issues needing to be addressed promptly O Domestic Emissions Trading System O Environment tax O Departure from late-night work and lifestyles O Introduction of darjefst savings	under the	e progress towar Kyoto Protocol, a and Kyoto mech	II measures, i	ncluding sink

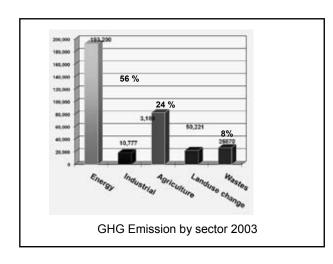


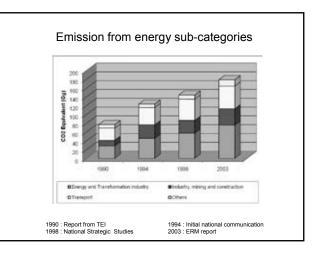


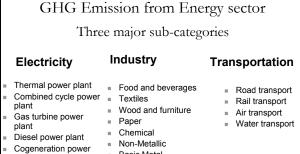








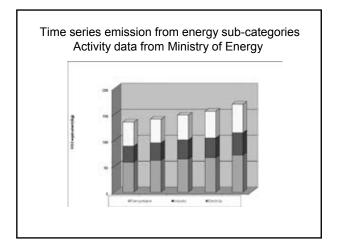


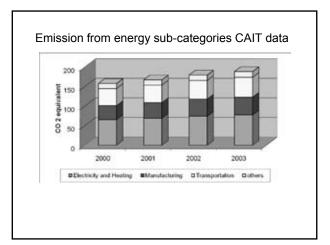


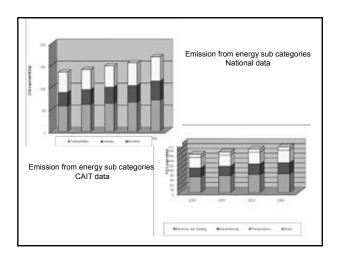
Time series estimations : Energy sector

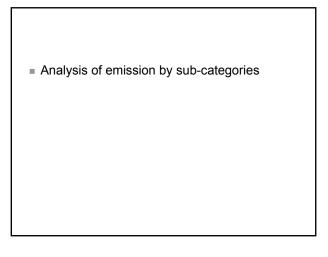
Method applied

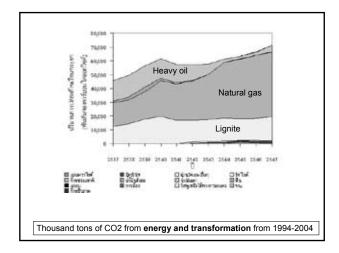
- IPCC 1996 revised GL
- Data used in estimation
 - Statistical report from Ministry of Energy
 - GDP form Office of National Economics and Social Development Board

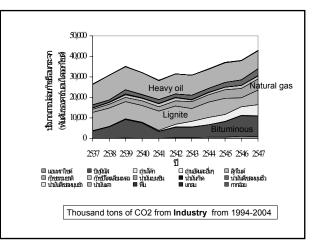


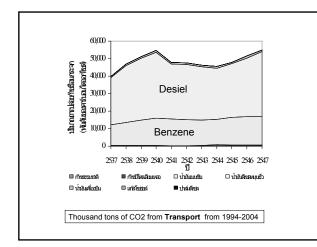

- Basic Metal Gas engine power
 - Fabricated metal
 - Other (Unclassified)

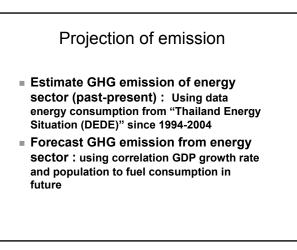

-83-

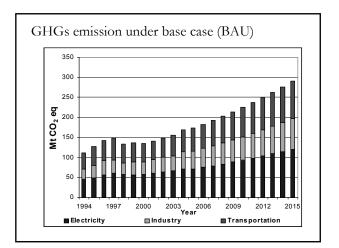

plant

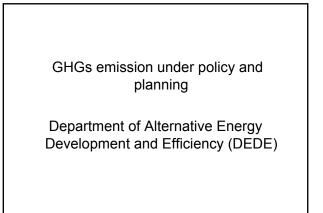

plant (2004)

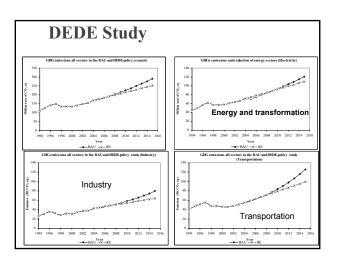


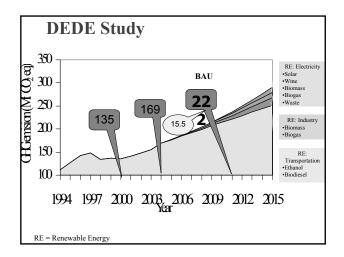


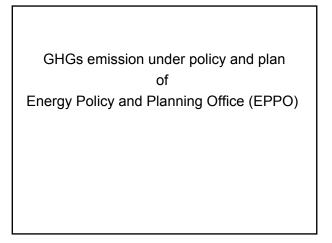


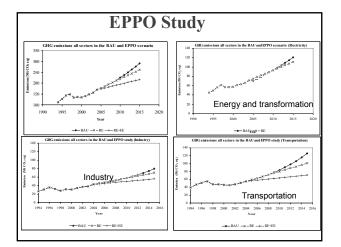


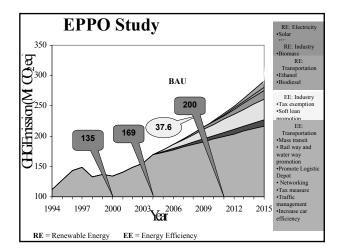


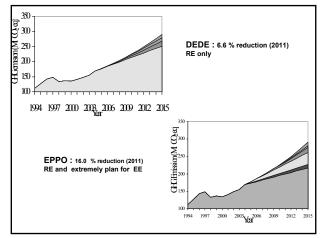


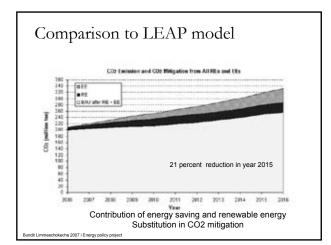




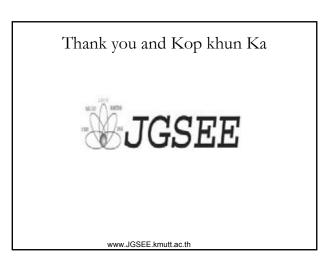

	Energy reducing (Ktoe)	GHG emission reducing (M CO ₂ equivalent)			
Renewable Energy at 2011 (RE)					
Electricity	1,169	2.7			
Industry	1,650	5.3			
Transportation	2,484	7.5			
Total	5,303	15.5			
GHG emission under so GHG emission under B	222 (Mt CO2 equivalent) 235.5 (Mt CO2 equivalent)				

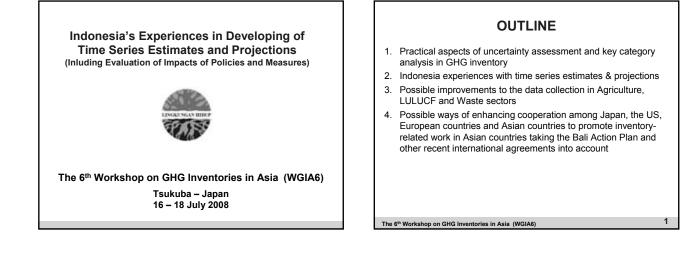






	Energy reducing (Ktoe)	GHG emission reducing (Mt CO ₂ equivalent)			
Renewable Energy at 2011 (RE)					
Electricity	741	1.7			
Industry	453	1.4			
Transportation	2,074	6.3			
Energy Efficiency a	nt 2011 (EE)				
Industry	3,411	9.0			
Transportation	6,269	19.2			
Total	12,948	37.6			
GHG emission under GHG Emission BAU i	scenario of EPPO in 2011 n 2011	200(Mt CO ₂ equivalent) 237.6 (Mt CO ₂ equivalent)			




Conclusion

- Time series estimation help analysis historical activities of the country and to see trend in the future
- Use only one national data source (most reliable) to avoid confusing and controversy
- Historical tracking of data is important

Acknowledgement

- Energy policy project supported by EPPO and TRF
- GHG mitigation option project supported by TRF

2

Practical Aspects of Uncertainty Assessment and Key Category Analysis in GHG Inventory

- Existing data concerning GHG sources & sinks of Indonesia are those given in GHG Inventory of INC → in the INC the term 'Key' category of GHG sources & sinks have <u>not been yet analysed</u>.
- The most up-dated data regarding key source & sink categories analysis for GHGs of Indonesia is <u>currently under preparation</u> by a national working group administered by Ministry of Environment & other relevant institutions that will produce the Second National Communication (SNC).
- 3. In preparing 'Key' sources & sinks, IPCC 1996 guidelines relevant to the methodology & computational procedures for determining Key category of sources & sinks is <u>used</u>. In addition, IPCC Good Practice Guidance (<u>IPCC, 2000</u>) and the IPCC Good Practice Guidance for <u>LULUCF (IPCC, 2003</u>) are used in identifyng of key categories of emissions and removal.

The 6th Workshop on GHG Inventories in Asia (WGIA6)

- Furthermore, the SNC will assess possible impacts of the changes of <u>government structure</u> from centralized to decentralized (regional autonomy) to the SNC reporting coverage.
- Indonesia is grouping the source & sink categories into <u>6 sectors</u>: energy, industrial process, agriculture, LUCF, waste, coastal.
 - energy sector: the national inventory only covers emission from fuel combustion, in which the fugitive emissions are not included in SNC
 - At the moment, the inclussion of solvent and other products in the national inventory are difficult to be achieved (but not for the years when the relevant activity data are available)
 - SNC will include the emisions from antrophogenic activity in coastal area and the coastal potential as emisions sink.
 - SNC will cover emissions from various wastes (waste sector in INC only cover domestic solid waste). The SNC are carying out sensitivity & uncertainty analyses for some waste categories.

The 6th Workshop on GHG Inventories in Asia (WGIA6)

3

5

	SECTORS	DESCRIPTION OF ACTIVITIES INCLUDED
1	Energy	Total emission of all greenhouse gases from <u>stationary and mobile</u> energy activities (fuel combustion as well as fugitive fuel emissions).
2	Industrial Process	Emissions within this sector comprise by-product or fugitive emissions of greenhouse gases from industrial processes. Emissions from <u>fuel combustion</u> in industry will be reported under Energy. Emissions should, wherever possible, be reported according to the ISIC Group or Class within which they occur.
3	Solvent & Other Product Use	Not covered
4	Agriculture	Describes all anthropogenic emissions from this sector, <u>except for</u> fuel combustion & sewage emissions, which are covered in energ and waste modules.
5	LUCF	Emissions & removals from forest & landuse change
6	Waste	Emissions from waste management
7	Coastal/Ocean	GHG emissions & removals from ocean activities.

- 6. Completeness of SNC inventory will be improved by including sources that were not included in INC. The SNC will include more sources of emissions, sinks, and GHG components as mandated in 17/CP8 Kyoto Protocol. The new data of estimated HFCs, *PFCs* and *SF*₆ emissions are included in SNC while in INC only cover CO₂, CH₄, and N₂O. If necessary, NOx and CO components will be included as written in the IPCC guideline (revised 1996) and Indonesia's document on the INC.
- 7. The IPCC (1996) Inventory Guidelines will be adopted in developing the GHG inventory for the SNC. However, if the emission factors are not available, the National GHG Inventory Team will assess the use of the 2006 or 1996 IPCC guidelines. The assessment aims to see potential problems, barriers and approach to remove the barriers if the 2006 IPCC guideline will be adopted in future national communications
- Differing interpretations of source & sink categories, or other definition, unit, assumption, etc will be main causes of uncertainty → SNC are preparing key categories analysis as well as uncertainty analysis for some of key categories.

The 6th Workshop on GHG Inventories in Asia (WGIA6)

7

11

Indonesia Experiences with **Time Series Estimates & Projections**

- The estimation of GHG Inventory in SNC uses <u>2000 as base year</u> with the time series 5 years (INC base line 1994 and time series 5 years). The projection of the GHG source & sink potentials of the SNC is up to 2025 (INC is also 2025) → KEN (National Energy Policy of Indonesia), i.e. estimation data in energy sector is up to 2025.
- In estimating GHGs from sectors in the SNC, Indonesia uses as much as possible local emission factors that are already available, particularly from agriculture and forestry sector. However, not all sectors covered in the GHG inventory have local emission factors.
- The emission factors used in INC are default value as provided in the IPCC guideline (revised 1996) while in the SNC, some of those factors are revised according to recent Indonesia's circumstances, particularly those that are not available in the INC document i.e. agriculture & forest sectors.

The 6th Workshop on GHG Inventories in Asia (WGIA6)

Methods Applied for Time Series Estimation & Projection

- Energy sector: Model for projection will depend on that are already used in energy sector (PUSDATIN and BPPT). ALGAS project (1997) used Dynamic Model. Components of dynamic model that are not included in Markal
- Delay of impacts when a certain policy is implemented.
- Markal uses econometry base since dynamic model uses dynamic base in which feed back is important; Markal (new version) uses specific program (BPPT) since Dynamic uses
- common program, i.e. Powersym, Vensym, Stella, etc
- Industry & Waste Sectors: Econometry model seems promissing for GHG estimation and projection in the SNC inventory, however, for future inventory dynamic model can be considered.
- AFOLU

Agriculture

6

8

- Estimating: Satelite images and local emission factor.
- Proyection: BAU scenario target is based on the projection demand and other scenarios will include mitigation optins.

6th Workshop on GHG Inventories in Asia (WGIA6)

Forestrv

- -For estimating forest covers: using Satelite images ('Citra Landsat)'. -Two sources of data / information might be applied:
 - a. Main source: Ministry of Forestry;

b. Second sources: MoE ('Towards Greener Indonesia' Program), as well as other institutions (National Aeronautics and Space Agency) -Projection: BAU scenario target is based on the projection demand and other scenarios will include mitigation options.

-Assessments of GHGs mitigation options in forestry sector show that cost effectiveness and mitigation potential of the same option vary among studies (primarily due to the change in input data) [INC] → Identify mitigation activities in forestry and estimates their cost-effectiveness & carbon mitigation potential using the most recent available data and analyzed the impact of mitigation options on national carbon stock. [SNC]

The 6th Workshop on GHG Inventories in Asia (WGIA6)

GHG Inventory and Emission Factors

- In the SNC, total emissions from energy sector are estimated with topdown (reference) approach and compared with those obtained from bottom-up (sectoral) approach. Other sectorS → topdown
- The various emissions from the energy system are organised in two main categories: namely fuel combustion emissions and fugitive emissions generated from energy production systems (coal mining, oil and gas production facilities, refinery, fuel transportation, etc).
- The methododology for estimating the gases from energy sector will apply Tier 3, except for fuel combustion (bottom-up): are divided in Tiers encompassing different levels of activity and technology detail. While, other sectors (including AFOLU): Tier 1.
- Local emission factors are going to be used, particularly for energy, forest, Agriculture (rice field), and waste sectors. Other sectors use default factors (as listed in IPCC guideline 1996) that are internally excited to the particular sector. consistent and it is essential to preserve this consistency when replacing the default by local values so that total emissions of carbon (for example) do not exceed the carbon available in the fuel.

Gaps & Priorities of GHG Inventory:

- INC GHG Inventory covers CO₂ & CH₄ in energy, industrial process, agriculture, waste, LUCF sectors (IPCC Guidelines 1996 with the base year 1994)
- b. Experience from INC :
 - main problems: gaps & uncertainty of some data, and non-availability of related local emission factors)
 - identified needs: strengthen institutional capacity to collect & collate data, and establish local emission factors
 - recommendation: the need to reduce uncertainties, verification & interpretation of collected data, and develop user-friendly database system for future updating.
- c. GHG inventory for SNC:

 - Main focus on CO2, CH4, N2O, and <u>other gases (PFC, SF6, HFC)</u> where possible (depending on data availability) with base year 2000 Uses IPCC Revised Guidelines (1996), IPCC Good Practice Guidance and Uncertainty Management for National GHG Inventories (2000), Good Practice Guidance for LULUCF (2003) Sectors: energy, industrial processes, agriculture, waste, land-use & forestry, and coastal Consider the New governmental structure

The 6th Workshop on GHG Inventories in Asia (WGIA6

- e. Key Sources of GHG emissions/removals:
- Energy combustion in energy industries, manufacturing industries, transportation, residential & commercial, & agriculture; fugitive emissions from coal mining & handling, and oil & gas operations; burning of biomass fuels
- Industrials processes cement production; lime production (mineral products); ammonia/fertiliser & petrochemicals (chemical industries); iron & steel, and aluminium productions (metal products)
- Agriculture enteric fermentation in domestic livestock; manure management; flooded rice cultivation; field burning of agriculture
- Land-use change & forestry changes in forest & other woody biomass stock; forest & grassland conversion; abandonment of managed lands; emissions & removals from soil; on-site burning of forest
- Waste landfills; domestic & commercial wastewater treatment; industrial wastewater treatment
- Coastal: Antropogenic activitlies in the coastal area

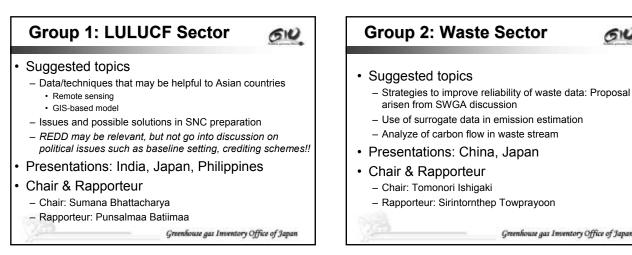
The 6th Workshop on GHG Inventories in Asia (WGIA6)

10

ITEM	INC	Needs of improvement
Type of GHG emissions	CO ₂ , CH ₄ , N ₂ O	Inclusion of other GHGs under IPCC 1996 guideline
Emissions sources	Energy sector	Improve all sources as fuel combustion as well as fugitives
	Industrial Processes (mineral, chemical, metal)	More detail for emission sources in industrial processes (by type of industry)
	Agriculture (domestic livestock, rice cultivation, prescribed burning of savanna, field burning of agricultural residues, agriculture soils)	Completing all emissions from all sub- sectors of Agriculture since in INC not all emissions of these sources were covered. In addition, the SNC will use more local emission factors.
	Land Use Change and Forestry (LUCF)	Improve sources of LUCF (changes in forest & other woody biomass stocks, CO2 from forest & grassland conversion, on site burning of forest, eg. emissions of non- CO2 trace gases, abandonment managed lands, CO2 emissions or uptake by soil from land-use change & management)
		In the SNC, agriculture & LUCF will be merged as AFOLU
	Waste (landfill) and other wastes	Inclusion of emissions from various waste (domestic and commercial/Industry WWT)
Inventory Methodology	Referring to IPCC (revised 1996) Methodology	Full mplementation of the 1996 IPCC Methodology
Methodology to calculate GHG emissions	Energy sector (fuel combustion) - IPCC reference approach - IPCC Tier 1 methodology or sectoral approach	Energy Sector: - IPCC reference approach - Detailed Methods (IPCC Tiers 2/3): Emission estimations are based on detailed fuel information covering stationary and mobile sources
Emission factors	Default value of the 1996 IPCC	Local emission factors (if available) otherwise use IPCC 1996 default value

Possible improvements to the data collection in Agriculture, LULUCF and Waste sectors

- Waste Sector: the inclussion of domestic & commercial wastewater treatment; industrial wastewater treatment;
 - improving local emission factors and taking into consideration the implementation of mitigation projects in a number of large industrial companies.
 - Establishment of regional dumpsites will increase the potential of waste to energy projects, especially in urban cities
- LUCF: improving activity data through the use of GIS/satellite assessment, emission and removal factors through the use of NFI and researches and adding new sources (emission from wetlands, particularly from peatlands)
- Agriculture: improving emission factors for rice and cattle and taking into consideration the implementation of

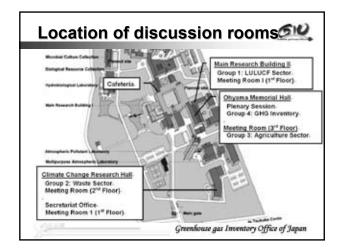

Potentially Identified activities for cooperation

- Strengthen institutional capacity to collect & collate data, and establish local emission factors
- Enhancing capability of Indonesia to reduce uncertainty of emission inventory data through:
- Developing local emission factor that may have implication to availability of sampling and measurment laboratory
- Upadating land use change and forest cover map
- carry out research on the assessment of local emission factors for forestry (peat), agriculture, waste sectors
- GHG emissions and removal potential of Anthopogenic activities in coastal areas
- Establishing National CC data center (including inventory data/information) that have to support with national capacity in dealing with the CC
- Developing Indonesia climate model concerning emission projection and analysis of the impact of policy and measures to the emission projection

Thank you

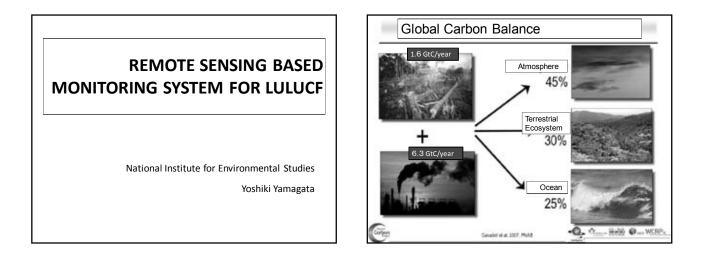
GIU

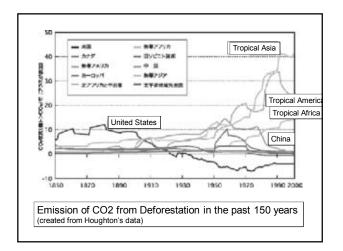
Group 3: Agriculture Sector 610

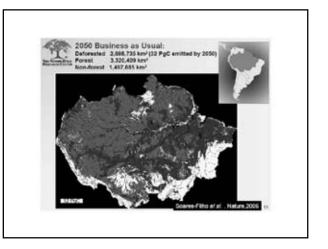

· Suggested topics

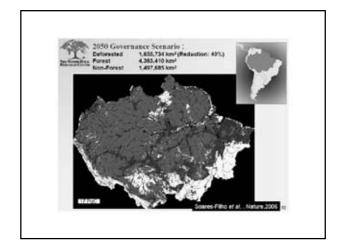
- Strategies to improve reliability of agricultural data - Current status and challenges in agriculture sector
- inventory Possible sources of new EF data applicable to Asian countries
- Presentations: Japan, Malaysia, SEA project, Thailand, Vietnam
- Chair & Rapporteur
 - Chair: Kazuyuki Yagi
 - Rapporteur: Shuhaimen Ismail

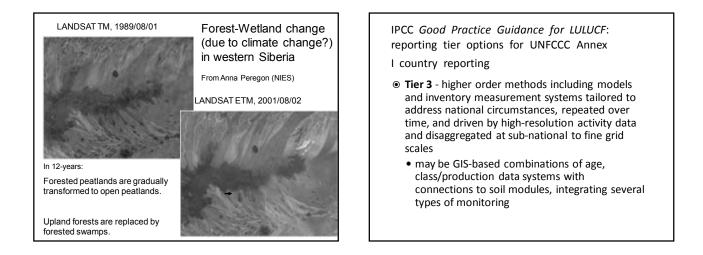
```
Greenhouse gas Inventory Office of Japan
```

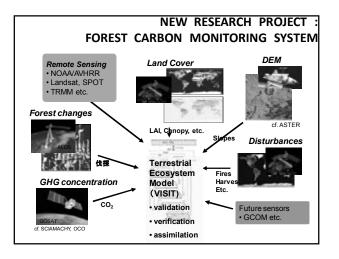


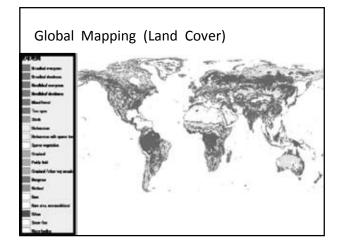

- Suggested topics
 - Awareness raising about GHG Inventory and GHG mitigation Application of inventory data to policy-making:
 - What kind of co-benefits can be pursued from inventory work and results?
 - Development of information exchange materials on GHG inventory: How to make better use of WGIA network?
 - Further consideration of issues raised in Sessions I, II & III: What activities should WGIA undertake?
- Presentations: Korea, Philippines, etc
- Chair & Rapporteur
- Chair: Thy Sum
- Rapporteur: Simon Eggleston

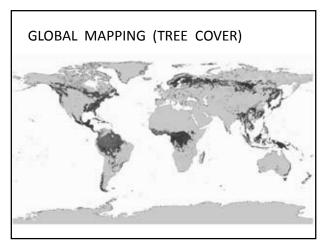


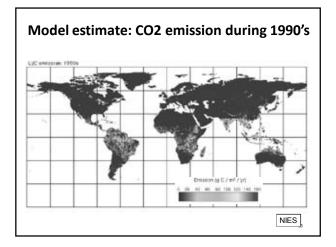

Schedule	610
Day 2 (Thursday, 17 July)	
12:50-13:05 Guidance 13:05-14:45 Presentations & discussion	
14:45-15:05 Tea Break – Do not miss it!!	
15:05-16:45 Discussion & preparation of summary report	
17:00-18:00 Hands-on training on KCA	
Day 3 (Friday, 18 July)	
9:30-10:30 Report of each group	
Greenhouse gas Inventory Off	ice of Japan



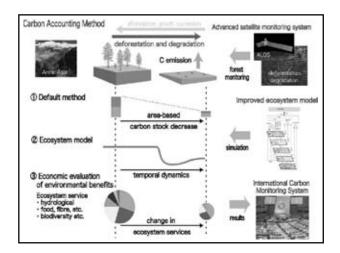

Emission reduction and forest conservation

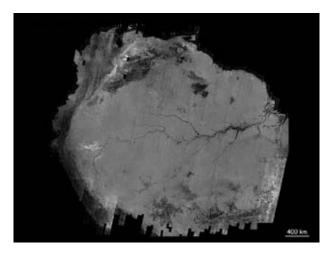

- Carbon stored in above and below ground biomass, and soil. After harvest, decay of biomass occurs in a few years time
- OC2 emission from deforestation is around 20% of global fossil fuel emission. Deforestation is increasing due to global rapid economic growth
- Consideration for the inclusion of reducing deforestation (REDD) is currently discussed as a new mitigation measures
- Forest conservation is also critically important for preserving Biodiversity (inter-linkage of UNFCCC, CBD, RAMSAR) and as an adaptation measures

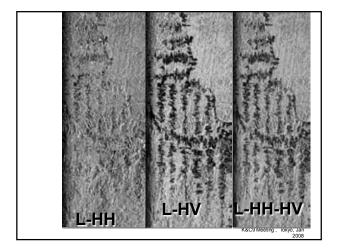


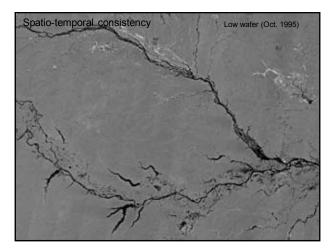

LULUCF monitoring issues

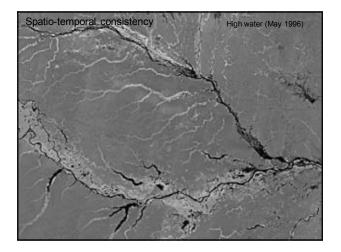
- 1. How to define Deforestation and Forest degradation (Land use/ Land cover?)
- 2. Remote sensing can monitor Land Use/Land Cover change?
- 3. Is the global Forest Carbon Monitoring System for evaluating CO2 emission/absorption due to Land Use and Land Cover changes is possible?

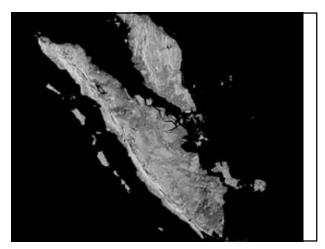


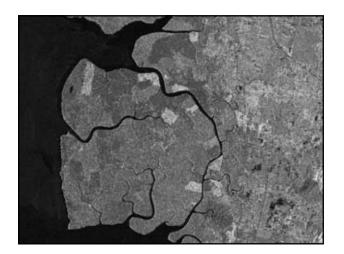


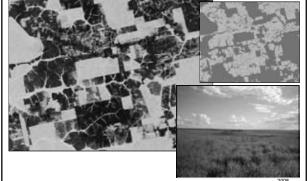


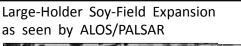

Needs for an Remote Sensing data for monitoring


- Remote sensing can provide the objective means to observe land use /land cover changes
- Especially for the tropical forests monitoring, cloud-penetrating radar imaging is a key tool
- Coordinated use of latest R/S sensors with in-situ measurements and model will be crucial for LULUCF monitoring

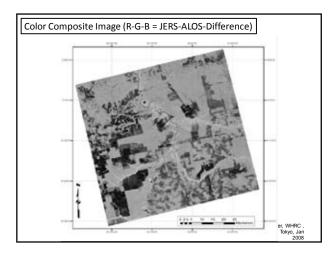


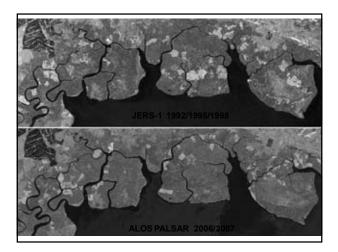


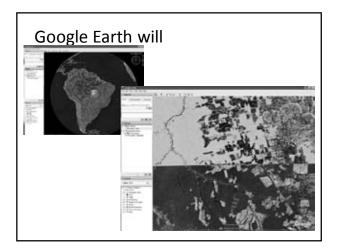


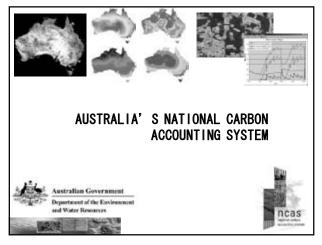


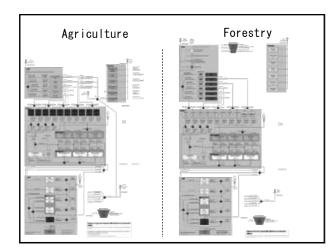
Change Detection ALOS-JERS

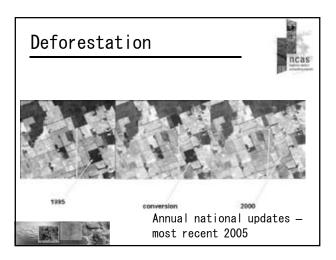

- Can Japanese SAR sensors ALOS (2006~) and JERS (1992~1998) historical data be used jointly to establish decadal deforestation rates?
- What types of changes are detected? What types are not detected?
- Forest, Grassland, Agricultural land, and Wetland

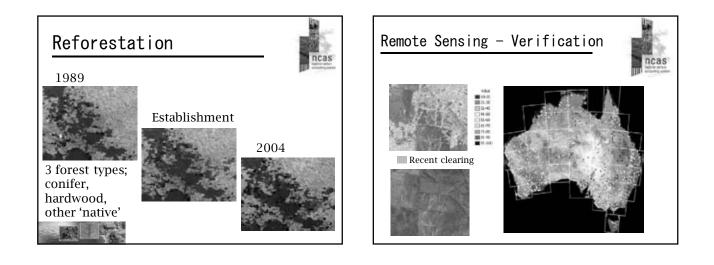


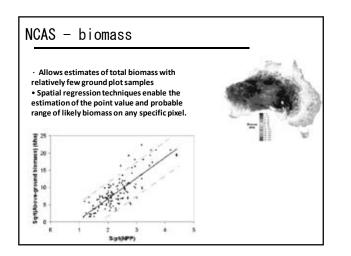


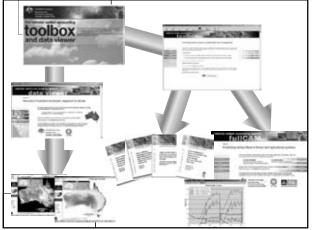


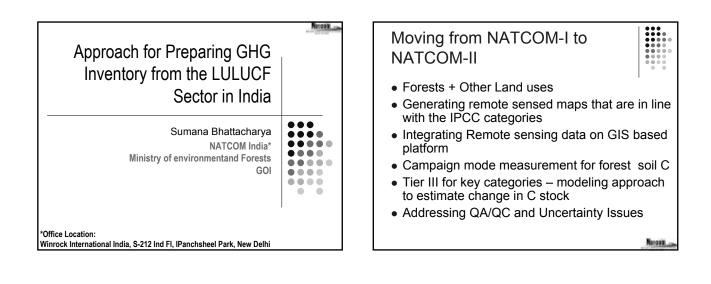


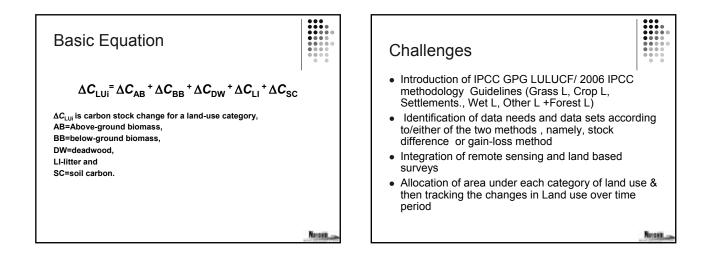


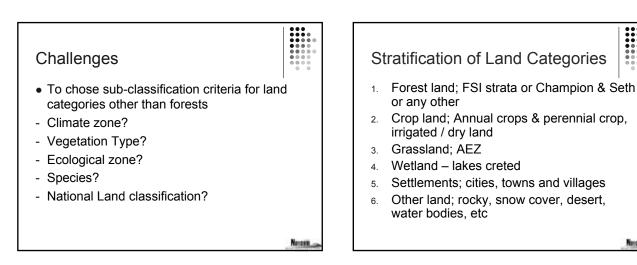




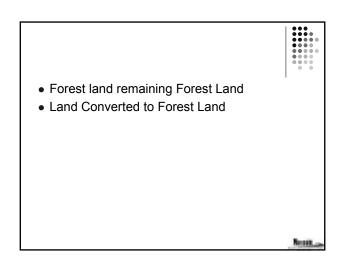


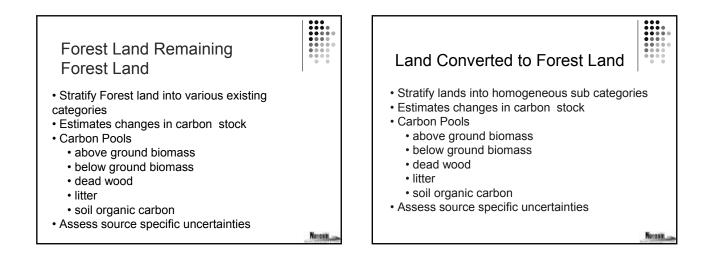


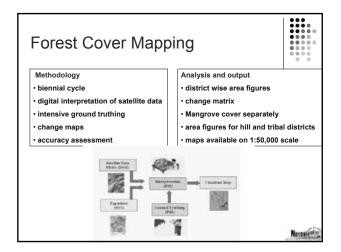


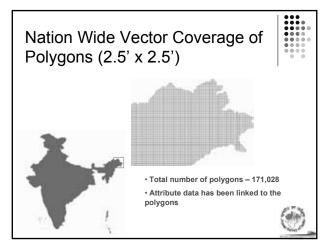


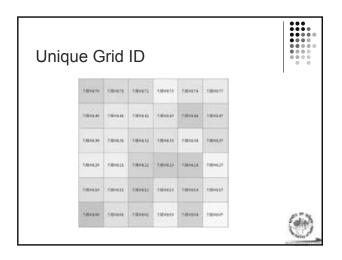
Nation

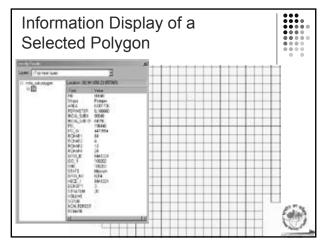


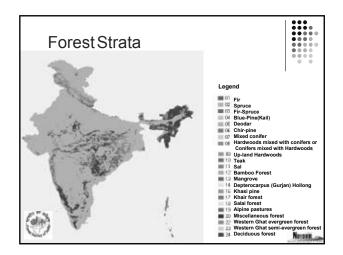


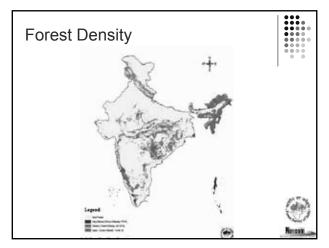

- Determination of parameters such as:
 - Soil OC by region/Forest type/land use type?
 - Above and below ground biomass stock
 - Corresponding C stock Change
 - Extent of fuel wood generated/wood gathering
 - Litter

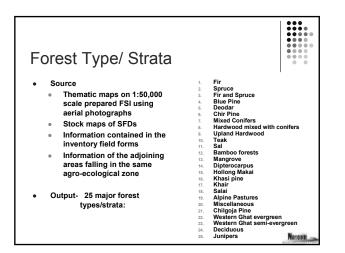

Challenges

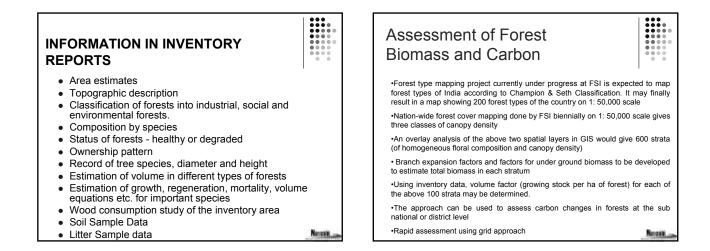

- Tier of Methodology to be used
- Steps to be taken for QA/QC and
- Strategies for reducing uncertainties

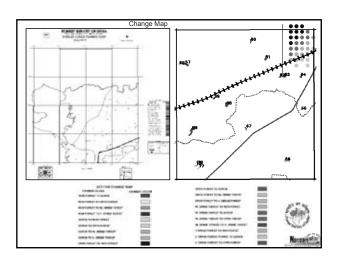


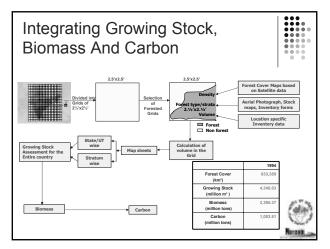


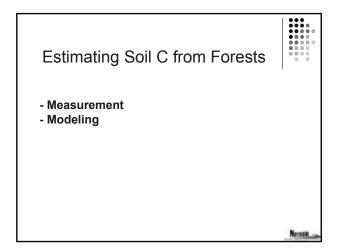


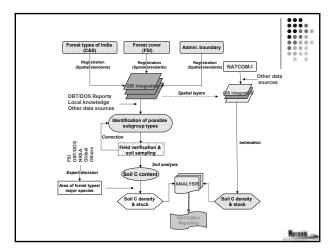


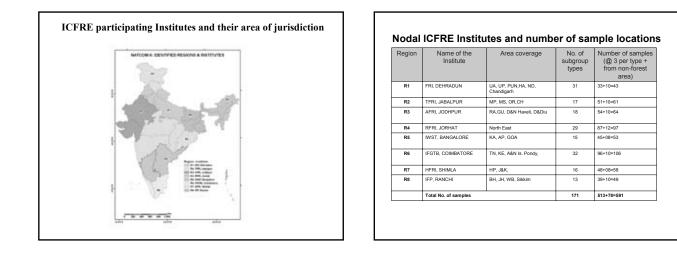


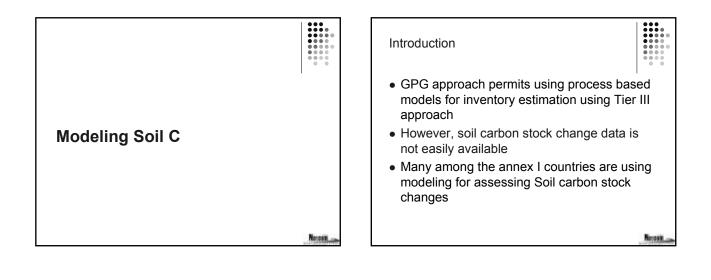


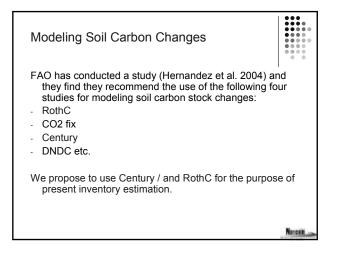


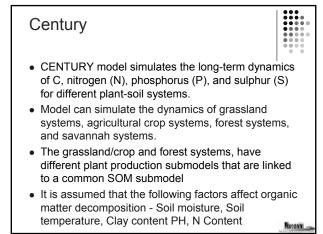

Forest Inventory	
 Over 80% of forested area inventoried so fa More than 130 inventory reports published Systematic random sampling with 0.01% intensity is carried out Area divided into grids of 2.5' x 2.5' and in e grid two random plots of 0.1 ha are marked Inventory data collected in prescribed forms processed to generate inventory reports 	each

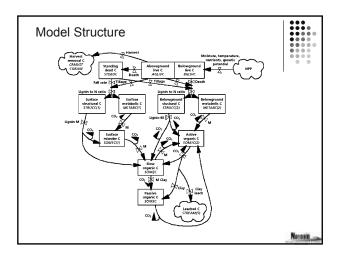

Nancala

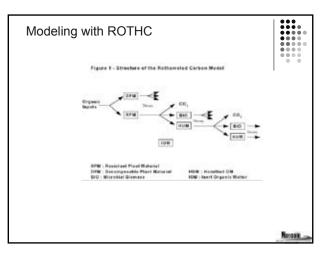


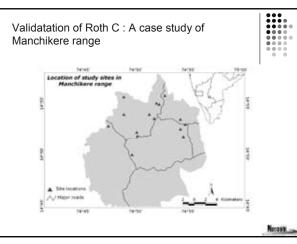


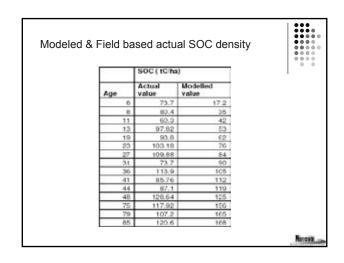


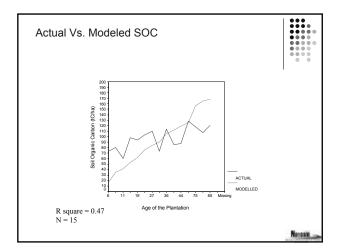


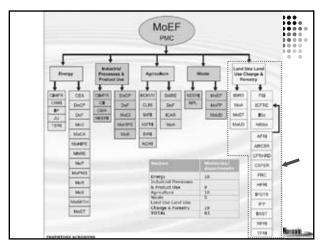


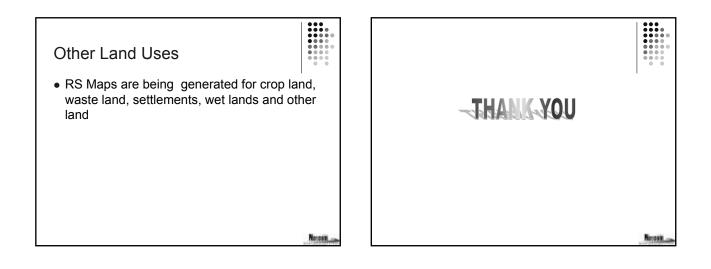


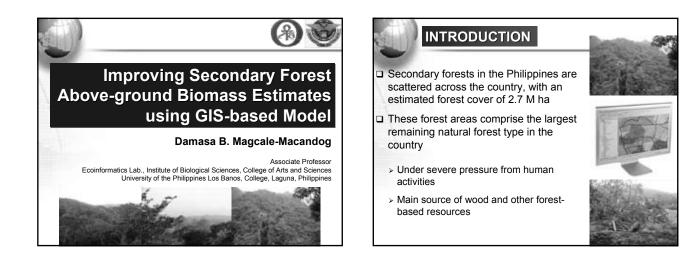


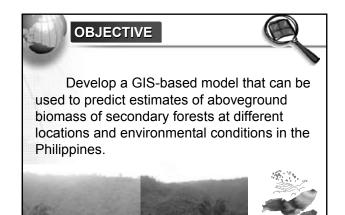


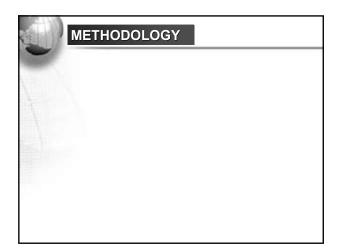


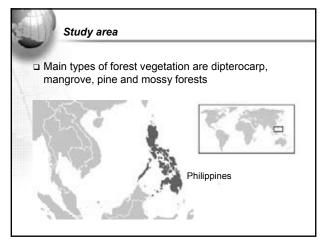

National

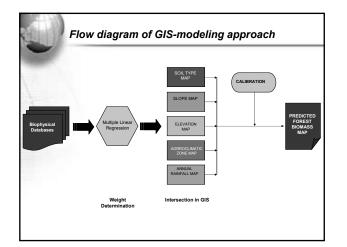


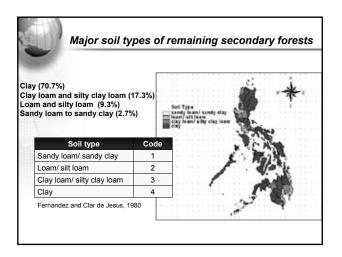

Plot dimensions No. of Plots Parameters sampler AGB (Meters) 50 * 20 45 GBH & H
(Trees) 50 * 20 45 GBH & H
Litter 5 * 5 135 Woody litter (wt)
Soil 50 * 20 90 250 gm each (0-15 & 15-30 Cms)

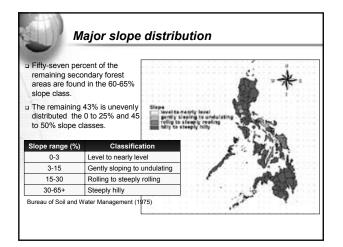


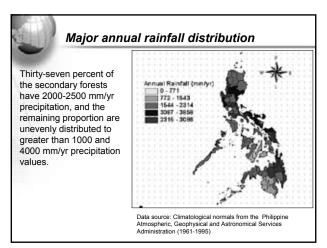

INTRODUCTION

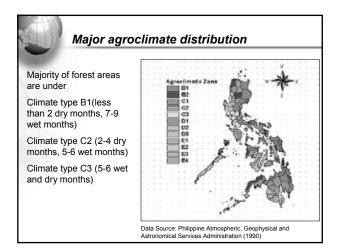

 Data reporting aboveground biomass density of secondary forests has been poor and insufficient to extrapolate biomass estimates to areas where data are lacking.

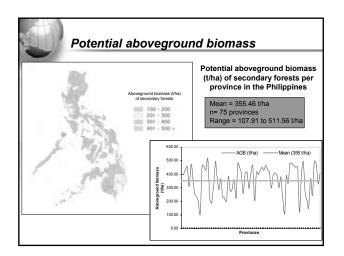

□ GIS technology can provide a means to estimate biomass density for regions with little data because consistent patterns of biomass density frequently result from similar biophysical characteristics in the study area.

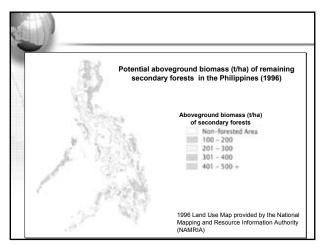


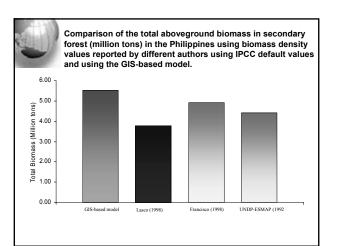







ajority of forests 00 m asl and fer 0-600 m asl and	w are found in	Elevation (m asi)
00 m asl elevati		0 - 304 305 - 533 534 - 762
evation (meters)	Elevation (feet)	763 - 1752
0-151	0-499	
152-456	500-1499	· CAM
457-1066	1500-3499	£ 126/323
1067-1523	3500-4999	1 . Ook
1524-1980	5000-6499	
1981-2437	6500-8000	TRANK I
2438+	8000+	S SKY





5	Potential biomass		
	tial biomass (t/ha) = /sical factor 1* Weight 1 + Phys	sical factor n* \	Veight n…
13	Physical factor	Weight	
	Annual rainfall	-0.1033	
	Climate	17.1668	
	Elevation	-0.1621	
	Slope	3.66446	
	Soil type	108.244	
Data	sources: Lasco et al, (2001); Guill	ermo (1998); Race	lis (2000)

Aboveground	biomass computation
Computation of the abovegroun	d biomass of secondary forests:
 Biomass density (t/ha) x fores = Total biomass/province 	st area per province
 Total aboveground biomass in = Σ Total biomass/province 	ce
0	5
= Σ Total biomass/provinc	ce
= Σ Total biomass/provinc Author	Biomass density (t/ha)
= Σ Total biomass/provinc Author Lasco (1998)	Biomass density (t/ha) 258
= Σ Total biomass/provinc Author Lasco (1998) Francisco (1998)	Biomass density (t/ha) 258 335

CONCLUSIONS

Use of GIS approach can:

- Reduce the uncertainty in estimates of aboveground biomass;
- □ Improve the quality of biomass estimates;
- Predict more accurate biomass estimates at different locations and environmental conditions; and
- Improve the computations for C stocks and preparation of national GHG inventory report

RECOMMENDATION

Improvements to this approach can be achieved:

- Further research on other factors that influence biomass production in forests and that should be included in future estimates;
- Enhancing the resolution of input maps;
- Incorporation of more recent GIS techniques as the technology; and
- □ Advances to reduce variability of biomass estimates at the local level.

Property and Reliability of Waste Data

Tomonori ISHIGAKI Ryukoku University, Japan Masato Yamada NIES, Japan

Topics in Waste Group

- Strategy to improve reliability of waste data (arisen from SWGA)
- Using surrogate data in emission estimation
- Analysis of carbon flow

Second Session

"Reporting on Country-Specific MSW Flow and GHG Emissions"

a. Mass and carbon flow in waste streams in city, region or countryb. GHG emissions from each SWDS estimated by IPCC spread sheet

Fourth Session

"Short Reporting on Recent Waste Management Technology and Practice in Asian Countries"

Fifth Session Discussion on

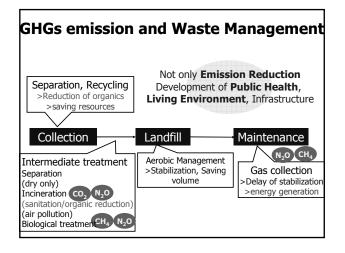
"What is Appropriate Waste Management in Asia?"

Fifth Session

 Subject 1: Characteristics of MSW Stream in Asia and How to obtain reliable data from this.

Fifth Session

 Subject 2: Advantage and Disadvantage of Technologies/Practice in Waste Management in Asia (from viewpoint of GHG Reduction and Environmental Protection)


Fifth Session

• Subject 3: What is Appropriate Waste Management in Asia? : Balance of Environment, Economy and Society

From SWGA: Discussion topics in session 2

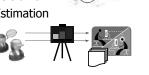
- 1. Difficulty to apply IPCC waste model in Asian countries
 - -Lack of waste historical data
 - -Low accuracy for national calculation: separation in each landfill should be better -Need more researches for parameter
 - evaluation
 - -Add LFGTE calculation in the model
 - -Establish standard for waste data collection

2.If FOD model is not suitable for methane emission calculation, how do we do next?3.k value

Data on Solid Waste Management

- Waste Generation
- Waste Stream
- Waste Composition
- Physicochemical Property
- Cost/ Revenue

Data on Solid Waste Management


- Waste Generation
- Waste Stream
- Waste Composition
- Physicochemical Property
- Cost/ Revenue

Waste Generation (Rate) - source and property of data?-• Method for Estimation - Weighing every truck on a scale - Sampling the representative activity - Estimation from Number of truck, Revenue... - Base Unit/Population, Economic Drivers or Trends... • Unit of Mass - Weight or Volume - Precise Density • Basis of Measurement - Wet (fresh)

- Dry (after pretreatment)
- Time of Estimation
 - Annual, Some years interval
 - Some case studies...

Survey on Waste Generation and Stream in Japan • Municipal

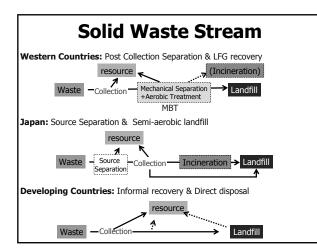
- Actual data collection from all municipality
- Cumulative estimation
- Industrial
 - Interviewing/ Basic unit
 - Computational Estimation

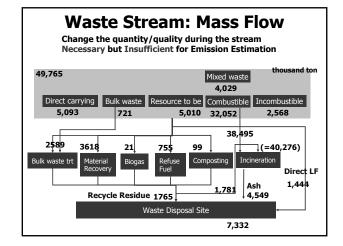
Data C Questionnaire – Population – Workers – Direct mana	agement/commision				•	
	ransportation Vehicl		- In shared		++++	14
 Separation (Category of Plastic	1222.1411		998 2480 ar	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	 41.1 41.4 <li< td=""></li<>
 Charge/fee 		the last test set and	-		and the second second	
 Amount of a 	collection	E-RELAT	-			he he he
		1 - 24 - 24	-		1 10 23 10	a the size of
- rreaument/i	Recycle of each cate	91				
		1 - H.H.H.H.	20.00.0		a per per per	be per pe
1008-80		- a au	-	_		
0+1000				_		
-	and the second se		C. Bernstein			-
101388 [1		111 11448				
-it presents (it)		ante .				4
		10010	0.1	1.1	4.4	
	10.10 00 0 10 10 00 00 00	A & 2 A 11				-
14141	01 01 00 10	4.4.2.841				-
122414	and the second second second	F. R. T. A+1				r
BRARTON + + + + + + + + + + + + + + + + + + +	100 C	Canadian				
B-6-4- 01		100000000000				-
18040793410 01	and the second second second	H H T A-11				1.1
10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	the second second second	60 (1)				- · ·
		A . A . A . A				

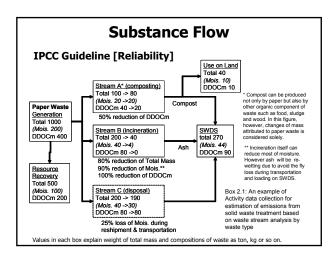
<section-header> Past Waste Generation (from LF) Extrapolation from Trend of existent data on waste generation Base unit for each class (authentic statistics) Residential: income, household composition... Business: sector, annual sales, employee number Temporal variation of each class composition Estimation from available/reliable statistics Population Obsideration Data Location Method of Estimation Accuracy, Reliability Continuity (disconnection)

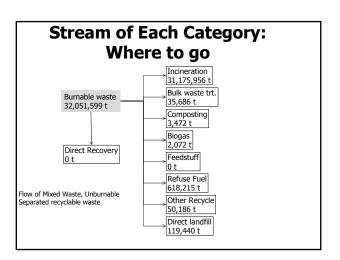
How to make reliable base unit

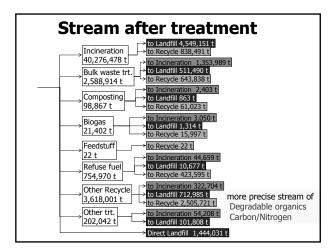
- Classification of activities
 - Link to available/ Reliable statistics
- Appropriate information collection
 - Total inspection
 - Selection of interviewing party
 - Municipality, Industry, Company, Scale
 - Questionnaire
 - Population, Household, workers for primary/tertiary industries
 - Expenditure, Shipment value

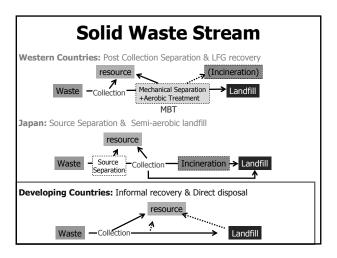

Data on Solid Waste Management


- Waste Generation
- Waste Stream
- Waste Composition
- Physicochemical Property
- Cost/ Revenue

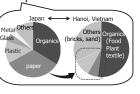

Waste Stream

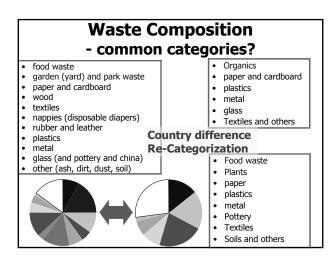

- Waste Generation
- rate of collection
- resource recovery


 Source/post collection
 Informal recovery
- land disposal (open burning)
- treatment
 - separation, composting, incineration etc.



Simple Waste Stream


- Waste Generation: Most important data
 - Change of quality/amount between generation and disposal
 - Weight
 - Generator (Municipal, Industrial)
 - Temporal difference
 - Measurement : at landfill, at transfer station
- Current Generation
- Estimation of Past Generation


Data on Solid Waste Management

- Waste Generation
- Waste Stream
- Waste Composition
- Physicochemical Property
- Cost/ Revenue

Waste Composition

- Category
 - percentage of garbage, paper, plastics, metals
 - Country/ Regional Difference
 - Classification
- Impact of Informal Recovery
- Where to investigate
 - Collection Station
 - Transfer station
 - Incineration/Landfill
- Description of Method

Food waste garden (yard) and park waste paper and cardboard (pre-separated?) Wood Textiles (natural/synthetic) nappies (disposable diapers) rubber and leather (natural/synthetic) plastics (soft/hard, usage) Metal (Fe, Cu, Al) glass (pottery and china) other (e.g., ash, dirt, dust, soil, electronic waste)

Data on Solid Waste Management

- Waste Generation
- Waste Stream
- Waste Composition
- Physicochemical Property
- Cost/ Revenue

Physicochemical Property

- How to estimate
 - "BioDegradable Organic Carbon/Nitrogen"
- Investigation
 - water content/ Ignition loss/ ash content
 - calorific value
 - Solid phase TOC
 - AT4, GB21
 - Eluates analysis (BOD, DOC)
 - content of carbon/ nitrogen/ sulfur/ chlorine
 - heavy metals/ dioxins...

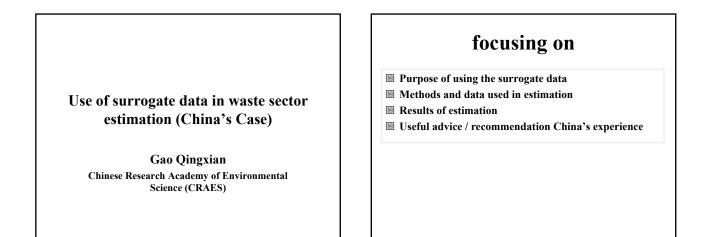
Physicochemical Property - quality of data?-

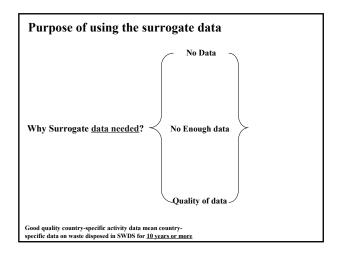
- Method of sampling (representativeness?)
- Method of pretreatment (drying, grinding, mixing, extracting...)
- Analytical method (common or experimental?)
- Statistical parameters (average, range, error...)
- unity of unit (dry/wet weight, volume, pieces...)
- Purpose of Analysis

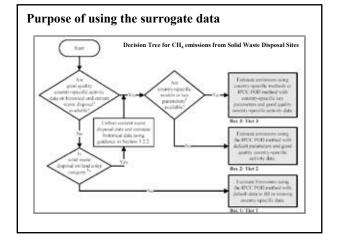
 For appropriate treatment/ disposal/ recycling
 assessment of pollution/ risk/ GHG emission/ energy

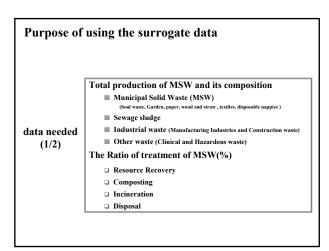
Other factors

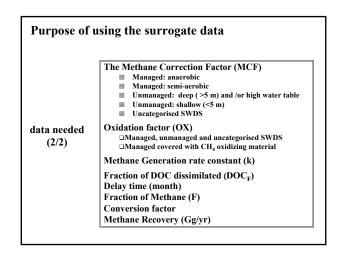
- Background information

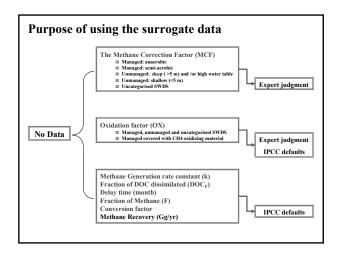

 (nature, economy, industry, culture...)
- Legal/economical framework
- History of waste management
- Description of facility/site for waste management
 - (transportation station, treatment plant, landfill...)

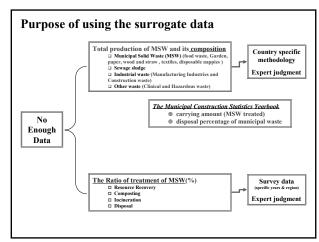

How to construct the record structure of database and which is information first?

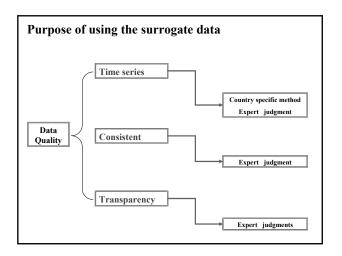

SUMMARY: To be considered

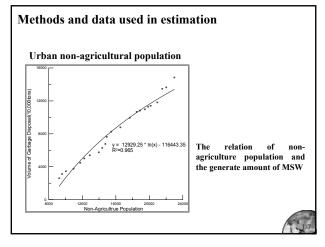

- Waste Generation
- Base Unit
 Past generation
- Waste Stream
 - Mass flow/Substance flow
 Stream of each category
- Composition
 - Impact of informal recovery
 - CategoryReal contents

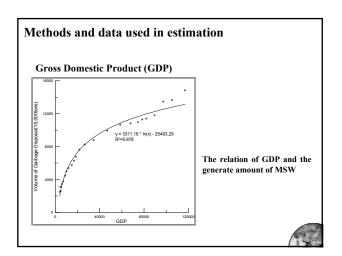

Problem in your country Priority/ Suggestion of other factor Situation of Waste Data Collection

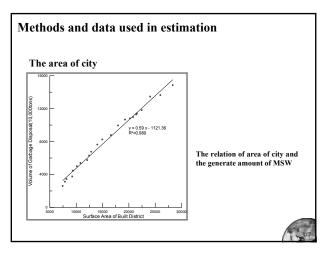


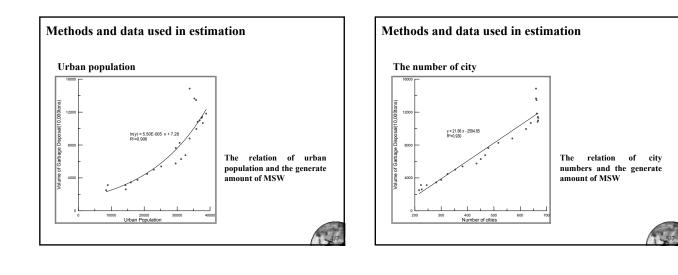


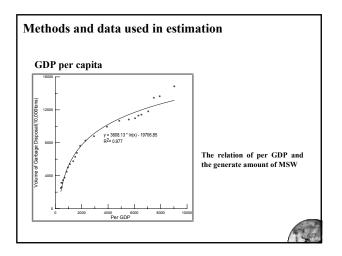


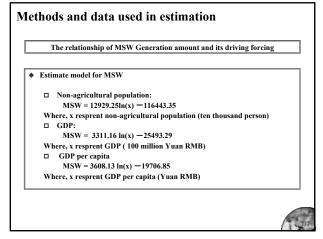


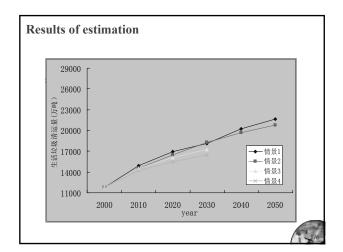


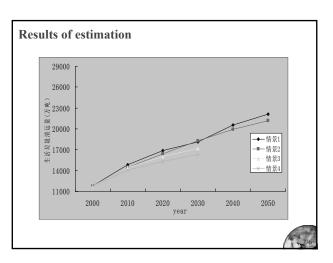


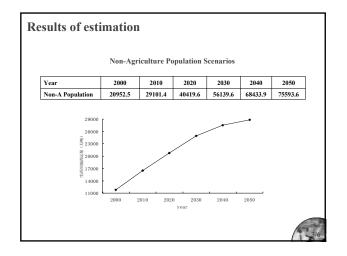


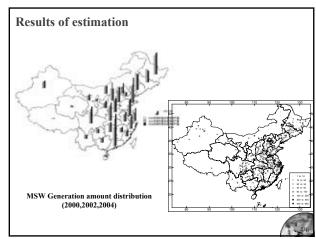


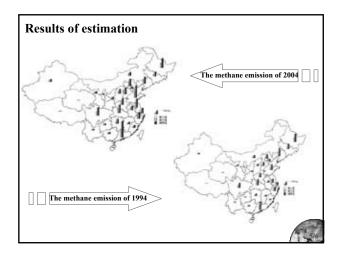


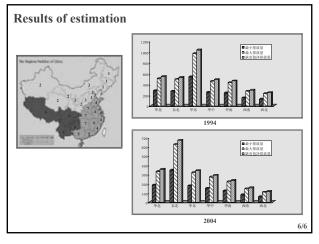


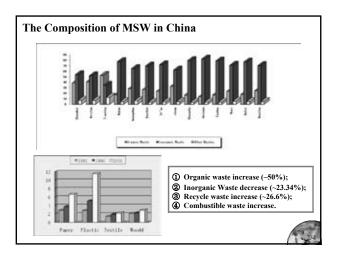


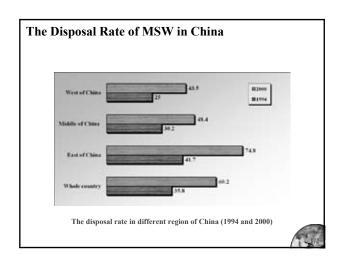


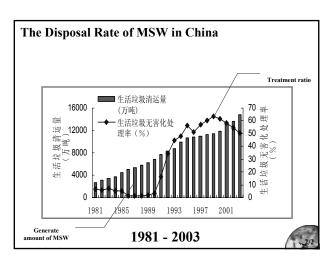






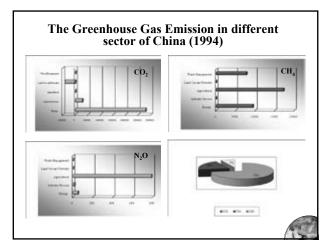



Thanks for your attention!


Tł	ie weighted a	average of ca	arbon content	of various components of	of waste stream
Beijîng	6	~		Tian]Tine	E.
IIII		1999	-	Annual and a second sec	
Sample	Tianjing	Beijing	Average	and the second se	
Paper and	Tianjing 14.08	Beijing 6.24	Average 10.16	components of waste	Organic Caron percentage (Weight)
Paper and Textiles	14.08	6.24	10.16	components of waste	
Paper and Textiles	• •			components of waste stream	percentage (Weight)
- Paper and	14.08	6.24	10.16	components of waste stream Paper	percentage (Weight) 26

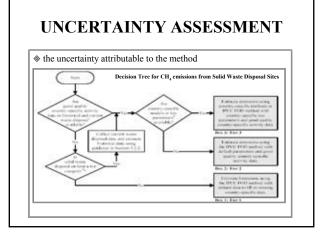
Because there are more containing amount of moisture in kitchen waste in China, the DOC value of kitchen waste(10.2%) in China is lower than IPCC default value(15%).					
Due to the wood and straw waste in China mostly is dry, and there are not too much fresh woods and straw waste in China, so the DOC value of wood and straw (35.5%)in China is higher than IPCC default value(30%).	Constant and the set of the				
Waste Streams	DOC (Weight)				
Papers	28.53				
	35.51				
Wood and Straw	27.68				
Wood and Straw					
Wood and Straw Textiles	27.68				

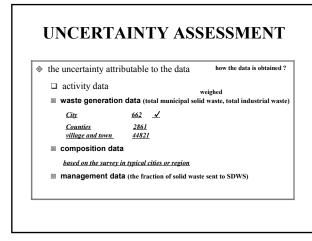
langle 1		Tresh MITH										
1994	Jaca .	t je ben	Figure	Photo	Tecnie	14mm	3detal	Class	Thus.	Otiers	lonide	
H.	2103-2016	154	141	1.4	8.1		154	4.3	12.56			
48	101	77.34	2.85	2.94	1.0	23	8.95	1.0	25.83	3.4	42.88	
11	Teal	97.94	1.61	3.3	1.1	1.2	1.10	1.79	25.9	5.38	40.44	
47	1042	54.75	2.78	1.78	1.71	6.81	1.01	8.44	21.18	410	41.64	
28	2774	11.30	8.78	0.50	1.7	2.85	1.10	1.87	2.0		40.71	
67	Tink	.45.78	1.14	1.62	1.94	1.59	-121	125	22.71	6.64	34.60	
82	1996	42.38	1.74	4.36	1.10	2.54	1.78	2.87	22.11	471	46.19	
61	Tran	.47.32	9.72	18.73	2.1	2.84	1.87		22.58	3.56	49.12	
73.	2008	40.4	6.61	11.44	2.22	147	187	1.59	20.14	+42	47.77	

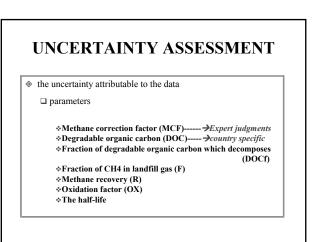


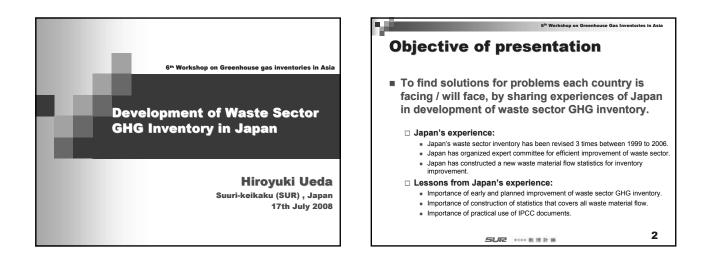
Information of SNC

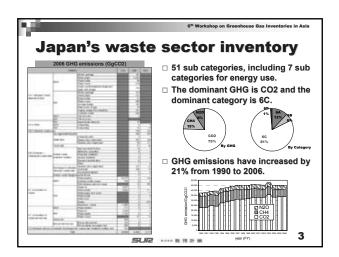
-

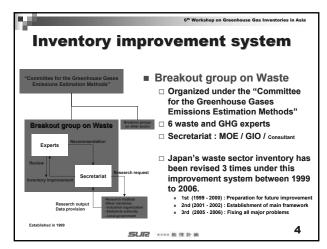

- To submit lately National Greenhouse gases inventory
 - INC: 1994
 - SNC: 2005
- To add new gases sources
 - $\blacksquare INC: CO_2, N_2O, CH_4$
 - \square SNC: CO₂, N₂O, CH₄, HFCs, PFCs, SF₆
- Geographical Scope
 - INC: China mainland
 - SNC: China Mainland + Hongkong SAR + Macao SAR

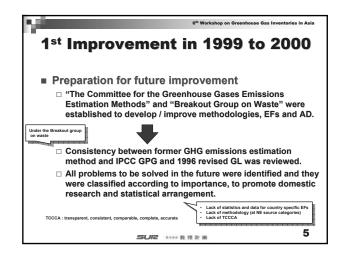


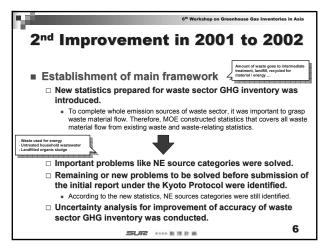

UNCERTAINTY ASSESSMENT

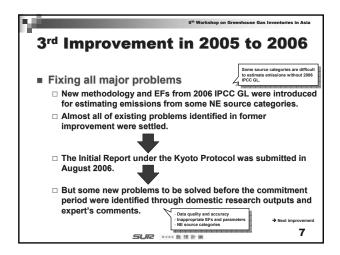

There are two areas of uncertainty in the estimate of CH4 emissions from SWDS:

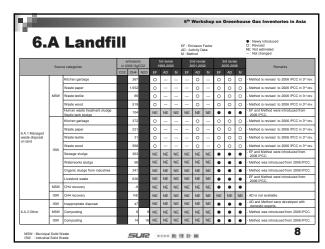

- $\hfill\square$ the uncertainty attributable to the method;
- $\hfill\square$ the uncertainty attributable to the data
 - (activity data and parameters)

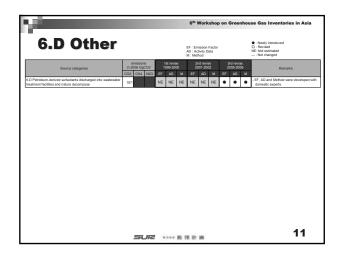


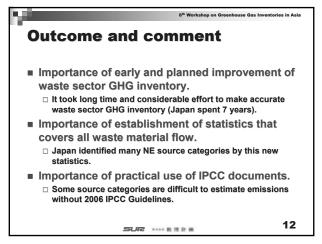


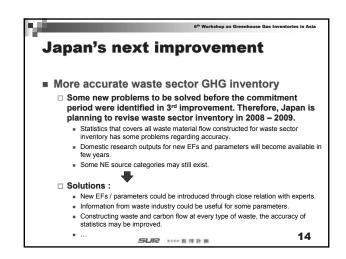


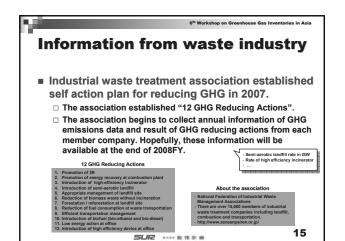


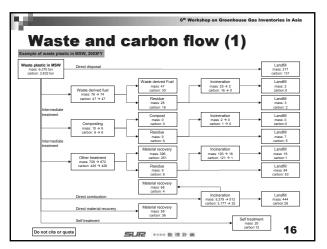


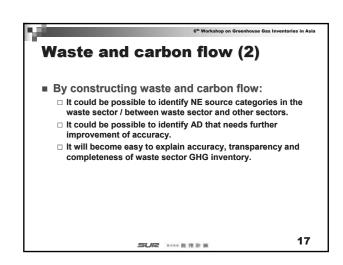




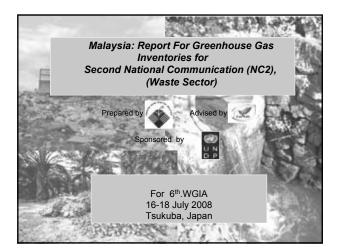

	DV	laste	w	6	U	e	r			tission tivity D hod					Newly introduced O : Revised NE: Not estimated : Not changed
	Source cat	200505		mission 006 Go			st revis 199-20			nd revis 001-200			rd revis		Remarks
	Source cap	rgunes	C02	CH4	N20	EF	AD	м	EF	AD	M	EF	AD	M	Pormarks
6.B.1 Industrial w	astewater			103	122	NE	NE	NE	٠	٠	٠	0		0	CH4 emission was estimated in 2 rd rev. N2O emission was added in 3 rd rev.
	Sewage treatm	ent plant		250	678	0			0	0	0				- N2O emission was added in 2 st rev.
		Community plant		2	7	NE	NE	NE	•	•	٠				 Method was introduced from domestic research output in 2rd rev.
Septic tank	Septic tank	Gappel-shori septic tarik		297	105	NE	NE	NE	•	•	٠				 Method was introduced from domestic research output in 2rd rev.
		Tandoku-shori septic tank		76	114	NE	NE	NE	٠	•	٠				 Method was introduced from domestic research output in 2rd rev.
	Vault toilet	lault toilet			86	NE	NE	NE	٠	٠	٠				 Method was introduced from domestic research output in 2nd rev.
		High-load denitrification		19	0	NE	NE	NE	٠		٠	0			- N2O EF was revised in 3 rd rev.
6 B 2 Domestic		Membrane separation		0	0	NE	NE	NE	٠	٠	٠	0			- N2O EF was revised in 3 rd rev.
and commercial	Human waste	Anaerobic treatment		1	0	NE	NE	NE	٠	•	•				 Method was introduced from domestic research output in 2nd rev.
Watsterwatter	facilities	Aerobic treatment		0	6	NE	NE	NE	٠	٠	٠				 Method was introduced from domestic research output in 2nd rev.
		Standard denitrification		0	1	NE	NE	NE	٠	٠	٠				 Method was introduced from domestic research output in 2nd rev.
		Other		1	0	NE	NE	NE	٠	٠	٠				 Method was introduced from domestic research output in 2rd rev.
	Discharge of	Tandoku-shori septic tank		337	33	NE	NE	NE	NE	NE	NE	٠	٠	٠	- Method was introduced from 2006 IPCC
	untreated domestic	Vault toilet		256	25	NE	NE	NE	NE	NE	NE	٠	٠	٠	- Method was introduced from 2006 IPCC
	wastewater	Household treatment		5	0	NE	NE	NE	NE	NE	NE	٠	•	٠	- Method was introduced from 2006 IPCC
	Human waste S	iludge disposal at sea		4	2	NE	NE	NE	NE	NE	NE	٠	•	٠	- Method was introduced from 2006 IPCC


6	.C	Incine	ra	at	i	D	1		EF : Em AD : Ac M : Met	tivity D					Newly introduced O : Revised NE: Not estimated : Not changed
		e categories		mission 006 Go			st revis			nd revis			rd revis		Remarks
	30010	e calegones	CO2	CH4		EF	AD	M	EF	AD	M	EF	AD	M	POETHARKS
		Waste plastics	12377	2	104	0				0		0			- AD was revised to new statistics in $2^{\rm rd}$ re
	MSW	Synthetic textile scraps	709	0	0	NE	NE	NE	NE	NE	NE	٠	٠	٠	
		Other biomass-derived waste		14	653	0			0	0					- AD was revised to new statistics in $2^{\rm rd}$ re
	cineration of	Waste ol	5,887	0	7	0				0					- AD was revised to new statistics in 2 rd re
6.C.		Waste plastic	5,092	1	111	0				0					- AD was revised to new statistics in 2 rd re
Incineration of waste		Waste paper and wood		1	17	0			0	0					- AD was revised to new statistics in 2 rd re
		Waste textile		0	0	NE	NE	NE	NE	NE	NE	٠	٠	٠	
		Animal residue		0	1	NE	NE	NE	NE	NE	NE	٠	٠	٠	
		Sludge		2	1,974	0			0	0					- AD was revised to new statistics in 2 rd re
		Hazardous waste	1,865	0	13	NE	NE	NE	NE	NE	NE	•	•	٠	
	MSW	Waste plastics	477	0	0	NE	NE	NE	NE	NE	NE	•	٠	٠	
		Waste oli	3,549	1	13	NE	NE	NE	NE	NE	NE	•	٠	٠	
6.C.	ISW	Waste plastic	1,167	3	4	NE	NE	NE	NE	NE	NE	•	٠	٠	
Incineration of waste derived		Waste wood		57	10	NE	NE	NE	NE	NE	NE	•		٠	
fuel	Waste tire		945	1	3	NE	NE	NE	NE	NE	NE	•	٠	٠	
	Refuse	Refuse derived fuel	322	0	2	NE	NE	NE	NE	NE	NE	•	•	٠	
	derived fuel	Refuse plastic and paper fuel	888	0	5	NE	NE	NE	NE	NE	NE	•	•	•	





Wast												
	ce in	ivei	τοι	ry II	n As	sia						
	GHG E	missions	from Was	ste Secto		Countrie						
						CCC Non-Annex //unfocc.int/nation			ems/2979.php			
	CO2	(Gg)		CH4	(Gg)			N2O(Gg)				
	Industrial Wastewater	Waste Incineration	Solid Waste Disposal	Domestic and Commercial Wastewater	Industrial Wastewater	Waste Incineration	Human Sewage	Industrial Wastewater	Waste Incineration			
Cambodia			6	1	0		0					
China		-	2,030	1,530	4,160							
India			582	359	62		7		-			
Indonesia		-				402 ¹⁾		-				
Japan		26,742	416	86	5	3	4	0	3			
Lao P.D.R. ²⁾			11		0				-			
Malaysia	3183)		1,043	4	220							
Mongolia		-	3	0	0							
Myanmar					Not Available ⁴⁾							
Philippines			203	46	44		3		-			
Republic of Korea ⁵⁾		4,756	461	2	2	0	3		1			
Singapore		152	NO ⁶⁾		NO ⁷⁾	NO	0		NC			
Thailand			20	2	14							
Viet Nam			66	1	1		4		-			
 Only the total CH4 emission Emissions in 1990 The production mechanism The Initial National Community Emissions in 2001 	of CO2 from this sou nication is not yet sub	rce is not explain	ed by the party in	the National Con	munication.							
 All organic wastes are incin The biogas produced at the 		sites is used as	uel and the fugiti	ve CH4 emissions	are neolicible.				13			



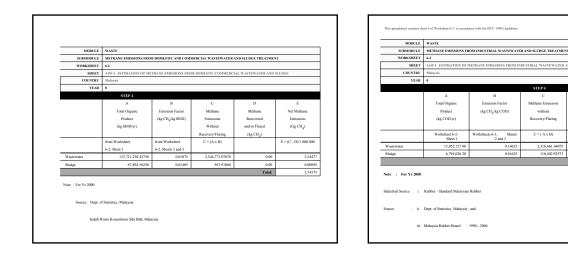
1.0 OBJECTIVES

- 1. To present the findings of GHG Inventory for the Waste Sector i.e methane emission from the following sources:
 - Waste water from domestic and commercials;
 ii) Waste water from industries (palm oil mills and natural rubber mills); and
 - Solid waste disposal sites (landfills).
- 2. To compare GHGs emission load for the year 1994 and 2000 using both IPCCC Guidelines 1995 and 1996
- 3.To present conclusion of several meetings and workshops held to confirm and verify the data collected in accordance with the IPCCC Guideline 1996.

2. BUDGET

The Project was carried out under the support of the United Nation Development Programme (UNDP) and inkind contribution by the Malaysian Government.

A sum of RM38,000.00 is allocated for the Project (Waste Sector) and the details expenditure to date is shown below:


Budget Used for GHG Waste Sector Till 30 June 2008 (Amount allocated for the Project is RM 38, 000.00)

Activities	Year 1 2007	Year 2 2008	Year 3 2009	Total (RM)	
	(RM)	(RM)	(RM)		
Preparing National GHG Inventory					
Procurement of Notebook PC		4, 419.00			
5 unit of Flash Drives	-	250.00	-	-	
EFT of Waste SWG to Sabah & Sarawak		1, 756.20			
Consultant fee		3, 000.00			
Meeting / Workshop	120.00	14, 597.83	-	-	
Final Technical Reports National Communication Procedural Document Draft NC2 Report	-	-	-	-	
Second Annual Progress, Financial Report	-	-	-	-	
TOTAL:	120.00	24, 023.03	-	24, 143.03	

3. METHODOLOGY

- For the purpose of preparing NC2, Revised IPCC 1996 Guidelines had been used, however other guidelines such as Good Guidance Practice 2000 and 2003 (GPG 2000 & 2003), UNFCCC Software and IPCCC 2006 Guidelines were also used as references
- Based on Decision Article 17/CP.8 of COP (Appendix 1) required non- Annex 1 Parties preparing for their second or third National Communication to use the Revised 1996 Guidelines in estimating and reporting their national GHG inventories.
- 3. According to the IPCCC Guideline 1996, two types of waste need to be considered, that is waste water and municipal solid waste. As for the waste water it is divided into two main groups, that is waste water from industries and waste water from domestic as well as commercials. The Sub Working Group (SWG) Waste Sector in their Second meeting on 24th August 2007 decided to focus GHGs inventory only on 2 major industries in the country i.e palm oil mills and raw natural rubber mills which consists of latex concentrate mill and Standard Malaysia Rubber mill (SMR). These industries are being licensed by the Department of Environment (DOE) and thus complete data inventory are available.

	INDUSTRIAL WASTEWATER		♦ SLUDGE									
ysia	METHANE EMISSIONS FROM INE	USTRIAL WASTEWATER AND	9 SLUDGE									
ysia	METHANE EMISSIONS FROM INE	USTRIAL WASTEWATER ANI	9 SLUDGE									
			8									
	STEP 4											
A	В	с	D	E								
Total Organic	Emission Factor	Methane Emissions	Methane	Net Methane								
Product	(kg CH ₄ /kg COD)	without	Recovered	Emissions								
(kg COD/yr)		Recovery/Flaring	and/or Flared	(Gg CH ₄)								
			(kg CH ₄)									
Worksheet 6-3, Sheet 1	Worksheets 6-3, Sheets 2 and 3	C = (A x B)		E = (C - D) / 1 000 000								
1,436,577,587.50	0.05625	80,807,489.30		80.8074								
0.00000	0.00625	0.00		0.0								
			Total:	80.80745								
	Worksheet 6-3, Sheet 1 1,436,577,587.50 0.00000	(kg COD.yr) Worksherts 6-3, Sheets Sheet 1 2 and 3 1,436,570,875,0 0.06625 0.00000 0.06625	(kg COD)yr) RecoveryPlaning Worksheer 6-3, Sheet 2 and 3 C = (A x B) 1.456,377,877.0 0.05625 503,07,480.30 0.00000 0.09625 0.00	(hg CODyr) Recovery Flaring and/or Fland Worksherr 6-3, Sheer 1 Worksheers 6-3, 2 and 3 Sheers C = (A x B) 1.406.577.8750 0.0562 0.000 0 0.00000 0.00025 0.000 Test:								

MODULE	WASTE								
SUBMODULE	METHANE EMISSIONS FROM INDUST	IRIAL WASTEWATER 1	REATMENT						
SOURCE	Oil & Grease (palm oil) & Rubber								
WORKSHEET	63								
SHEET	3 OF 4 ESTIMATION OF EMISSION F.	OF 4 ESTIMATION OF EMISSION FACTOR FOR SLUDGE HANDLING SYSTEMS							
COUNTRY									
YEAR									
		TEP 2							
Α	в	с	D	Е	F				
Sludge Handling System	Fraction of Sludge Treated by	Methane Conversion	Product	Maximum Methane	Emission Factor for Industrial Sludge				
0,144		Factor		Producing	Source				
	the Handling	(MCF)		Capacity	(kg CH ₄ /kg COD)				
	System			(kg CH ₄ /kg					
				COD)					
			$D = (B \ge C)$		$F = (D \times E)$				
Biological	0.1	0.65	0.06500						
	Reference: IPP 96 GL, 90% is wastewater. so. 10% is the		0.00						
	sludge. Workbook Moudule		0.00						
	6-Waste, Page 6.19, Table 6-8		0.00						
		Aggregate MCF:	0.06500	0.25	0.0162				

State	Total Population	Percentage Urban Population	Total Urban Population
Johor	2,740,625	65.2	1,786,888
Kedah	1,649,756	39.3	648,354
Kelantan	1,313,014	34.2	449,051
Melaka	635,791	67.2	427,252
Negeri Sembilan	859,924	53.4	459,199
Pahang	1,288,376	42	541,118
Perak	2,051,236	58.7	1,204,076
Perlis	204,450	34.3	70,126
Pulau Pinang	1,313,449	80.1	1,052,073
Sabah	2,603,485	48	1,249,673
Sarawak	2,071,506	48.1	996,394
Selangor	4,188,876	87.6	3,669,455
Terengganu	898,825	48.7	437,728
Kuala Lumpur	1,379,310	100	1,379,310
Labuan	76,067	77.7	59,104
Total	23,274,690		14.429.800

D Methane Recovered and/or Flared (kg CH₄)

E Net Methane Emissions (Gg CH₄)

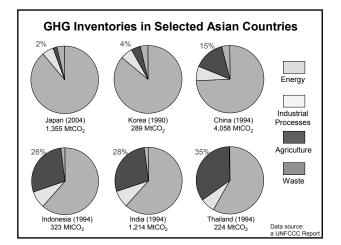
E = (C - D) / 1 000 00

0.1

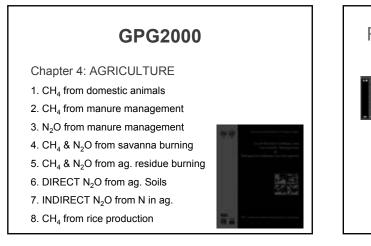
	A Population whose Waste goes to SWD5s	B MSW Generation Rate (kg(capitat/day)	C Annual Amount of MSW Generated (Gr MSW)	D Fraction of MSW Disposed to SWDSa (Urban or Total)	E Total Annual MSW Disposed to SWDSs (Gg MSW)	
	(Urban or Total) (persons)					
STATE			C = (A x B x 365)/1 000 000		$E = (C \ge D)$	
JOHOR	1,786,888	1.35	880.48882	1	880.488816	
KEDAH	648,354	1.08	255.58119	1	255.581189	
KELANTAN	449,051	0.5	81.95177	1	81.951769	
MELAKA	427,252	1.2	187.13618	1	187.136180	
NEGERI SEMBILAN	459,199	1.2	201.12934	1	201.129344	
PAHANG	541,118	0.92	181.70740	1	181.707398	
PERAK	1,204,076	0.8	351.59006	1	351.590055	
PERLIS	70,126	0.5	12.79806	1	12.798059	
PULAU PINANG	1,052,073	0.96	368.64626	1	368.646256	
SABAH	1,249,673	0.91	415.07882	1	415.078821	
SARAWAK	996,394	0.91	330.95240	1	330.952395	
SELANGOR	3,669,455	1.26	1,687.58253	1	1,687.582527	
TERENGGANU	437,728	0.86	137.40275	1	137.402749	
KUALA LUMPUR	1,379,310	1.57	790.41360	1	790.413596	
LABUAN	59,104	0.91	19.63141	1	19.631413	
Total/Avg	14,429,800	0.99533	5,902.09057			
	MSW Generation Rate base and Local Governm	ed on the National Strategic P ent Malaysia, Volume 2, page	lan for Solid Waste Management Aug : 2-17)	2005(Local Government Depa	tment, Ministry of Housing	

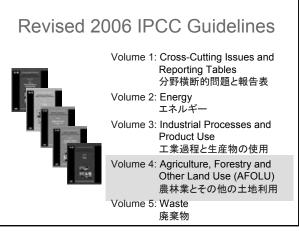
STATE							G=(C x D x E x F)	H= (B x G)	J=(H x A)		$L{=}\left(J-K\right)$		N= (L x M)
JOHOR	880.48882	0.6	0.55	0.9	0.5	16/12	0.33	0.198	174.33679	0	174.3367 9	1	174.33679
KEDAH	255.58119	0.6	0.55	0.9	0.5	16/12	0.33	0.198	50.60508	0	50.60508	1	50.60508
KELANTAN	81.95177	0.6	0.55	0.9	0.5	16/12	0.33	0.198	16.22645	0	16.22645	1	16.22645
MELAKA	187.13618	0.6	0.55	0.9	0.5	16/12	0.33	0.198	37.05296	0	37.05296	1	37.05296
NEGERI SEMBILAN	201.12934	0.6	0.55	0.9	0.5	16/12	0.33	0.198	39.82361	0	39.82361	1	39.82361
PAHANG	181.70740	0.6	0.55	0.9	0.5	16/12	0.33	0.198	35.97806	0	35.97806	1	35.97806
PERAK	351.59006	0.6	0.55	0.9	0.5	16/12	0.33	0.198	69.61483	0	69.61483	1	69.61483
PERLIS	12.79806	0.6	0.55	0.9	0.5	16/12	0.33	0.198	2.53402	0	2.53402	1	2.53402
PULAU PINANG	368.64626	0.6	0.55	0.9	0.5	16/12	0.33	0.198	72.99196	0	72.99196	1	72.99196
SABAH	415.07882	0.6	0.55	0.9	0.5	16/12	0.33	0.198	82.18561	0	82.18561	1	82.18561
SARAWAK	330.95240	0.6	0.55	0.9	0.5	16/12	0.33	0.198	65.52857	0	65.52857	1	65.52857
SELANGOR	1,687.58253	0.6	0.55	0.9	0.5	16/12	0.33	0.198	334.14134	0	334.1413 4	1	334.14134
TERENGGANU	137.40275	0.6	0.55	0.9	0.5	16/12	0.33	0.198	27.20574	0	27.20574	1	27.20574
KUALA LUMPUR	790.41360	0.6	0.55	0.9	0.5	16/12	0.33	0.198	156.50189	0	156.5018 9	1	156.50189
LABUAN	19.63141	0.6	0.55	0.9	0.5	16/12	0.33	0.198	3.88702	0	3.88702	1	3.88702

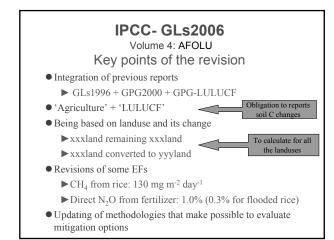
4. GAPS AND RECOMMENDATIONS


Several constrains were raised and discussed among the relevant agencies during SWG meetings and the workshops. Among others, four points were highlighted and agreed to be reported in the NC2 for the Waste Sector for Malaysia as follows:

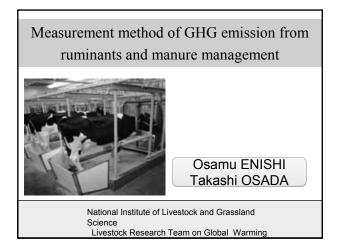
- The Guidelines used;
- Default value used, where in NC2 the SWG for the Waste Sector applied local default values instead of default value given in the IPCCC Guideline;
- Lack of detail data and information; and
- Lack of expertise.

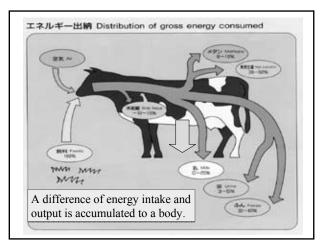

5. CONCLUSION


- By using IPCCC Guideline 1996, as of 30th June 2008, the total amount of CO2 Equivalent of methane gas emission from waste sector was estimated at 26,358.80 Gg in CO2 Equivalent for the year 2000, which had reduced from the total amount of 26, 614.77 Gg in CO2 Equivalent of methane gas emission for the year 1994 as reported in the INC.
- However the grand total GHGs emission load in terms of CO2 Equivalent for waste sector as reported in INC is higher i.e 26,925 Gg due to the fact that in the earlier reporting CO2 emission from waste water of palm oil mills was taken into account.
- The comparison between GHGs emission load for the year 1994 and 2000 using both IPCCC Guidelines 1995 and 1996 are shown below:


Sou				1995 IPCC Guidelines							1996 IPCC Guidelines						
	rces		INC(1994)			NC2(2000)			INC(1994)		NC2(2000)						
		CO2	СН4	N_0	CO2	СН	N ₂ O	CO2	сн,	N_0	co	2 CH4	N_0				
Categ	gories	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg	Gg				
1 Landfills			1043			1999.72			625.8			1168.61393					
2 Domestic &/ Wast	Commercial ewater Treatment		3.5			4.78			1.88			2.54573					
3 Industrial W	astewater Treatment	318	220.87			326.47			60.92			84.02137					
a.	Palm Oil		213.5			320			57.4			80.80749					
ь.	Rubber- Latex		2.64			1.54			1.24			0.78501					
c.	Rubber- SMR		4.73			4.93			2.28			2.42886					
'otal (Gg)		318	1267.37		478.14	2330.97			688.6			1255.18102					
olobal Warming Pot	ential	1	21	290	1	21	290	1	21	310	1	21.00000	310				
otal (Gg CO ₂₀)		318	26614.77		478.14	48950.37			14460.6			26358.80147					
arand Total (Gg CO	2)		26932.77			49428.51			14460.6			26358.80147					

WGIA6 Group 3: Agriculture


Major items for discussion


- Data (EF & AD) for animal sources (CH₄ & N₂O)
- Data (EF & AD) for soil sources (CH₄ & N₂O)
- Soil C issue
- Networking and collaboration in Asia

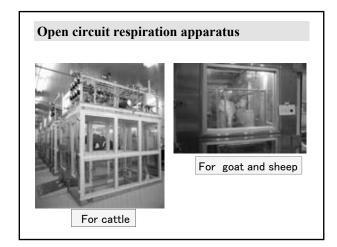
WGIA6 Group 3: Agriculture

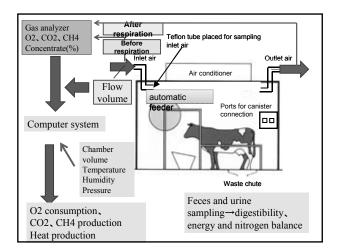
Expected items to report on Day 3

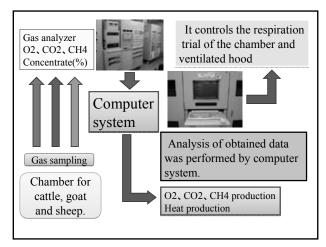
- · Issues identifies and possible solutions
- Recommendation on activities to be carried out within the WGIA framework
 - What to be done by WGIA7
 - What to be done in the long term

1.Measurement method of methane emission from ruminants .

2. Calculation method of methane emission from ruminant in Japan.

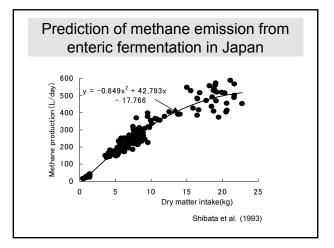


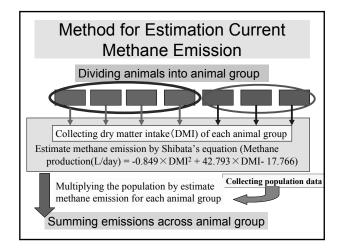

Many current inventories for enteric methane production are based on measurements of emission rates from ruminants in several methods.

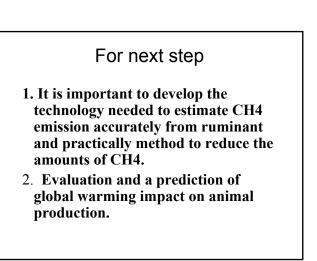

Several methods are

- 1. Open circuit respiration chamber
- 2. Gas mask method
- 3. SF6 method
- 4. In vitro method

Many current inventories for enteric CH4 production are based on measurements of emission rates from animals in **open circuit respiration chamber** in strictly controlled environments.

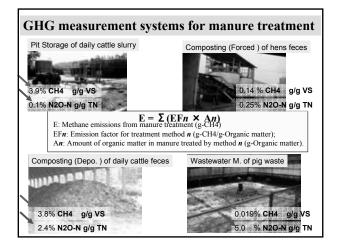

Method for Estimation Current Methane Emission

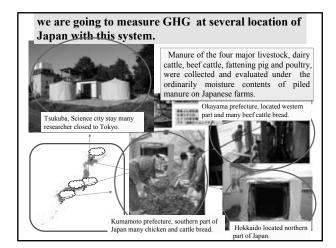

Methane emissions from livestock in Japan are estimated by:

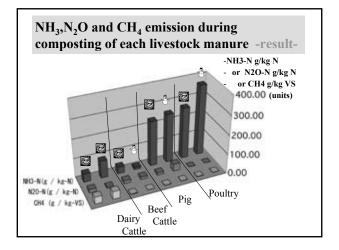

1)Dividing animals into animal group and collecting population data

2)Collecting dry matter intake of each animal group

- 3)Estimate methane emission by Shibata's equation (Methane production(L/day) = -0.849 × DMI² + 42.793 × DMI-17.766) DMI:Dry matter intake(kg/day)
- 4) Multiplying the population by estimate methane emission for each animal group
- 5)Summing emissions across animal group




GHG emission from Manure management


Manure is a source of organic fertilizer and unfortunately, a source of CH4 and N2O emission. Unsuitable management will offset the validity of resource circulation by an environmental impact called greenhouse-gases generating.

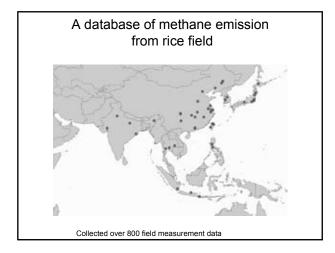
Measurement systems are important for the development of regulation technology.

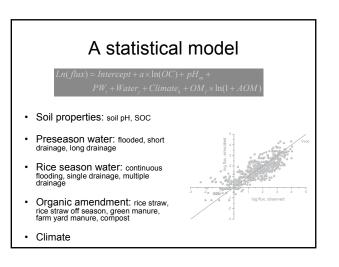
Not only that, It is useful also for your judgment which technology should be introduced for this issue resolution into your country.

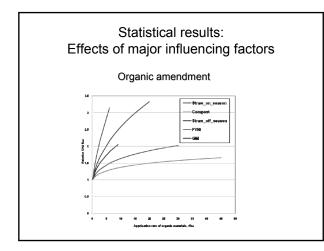
Conclusion of manure management

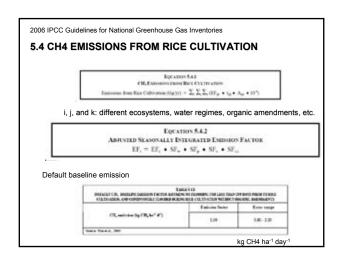
We developed a system for the quantitative measurement of emissions from composting using a large dynamic chamber in an experiment.

Not only the compost, but the emission factor of each treatment system should be evaluated under each countries procedure and general conditions, because those factors might be widely varied.

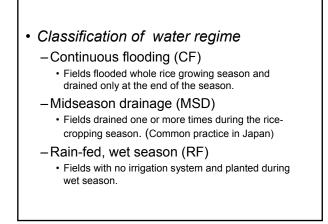

It is important that each country has the measurement technique of GHG emission, not only for inventory data but for the development of greenhouse gas regulations and technologies. (Country-specific emission factor, please)

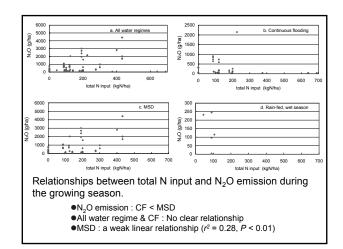

CH₄ and N₂O from rice paddies in 2006 IPCC GLs &

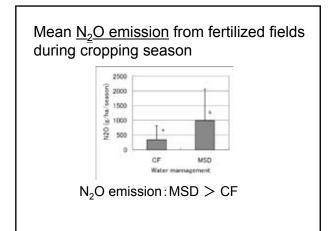

Estimate of Japanese country specific N₂O emission factors

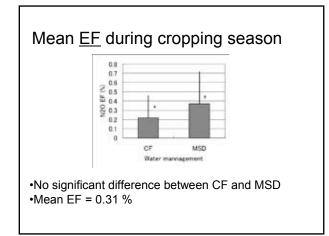

Hiroko Akiyama[†], Kazuyuki Yagi[†], Xiaoyuan Yan^{*} [†]National Institute for Agro-Environmental Sciences, Japan ^{*}Frontier Research Center for Global Change Current address: Nanjing Institute for Soil Science, China

1. CH₄ from rice paddies in 2006 IPCC GLs

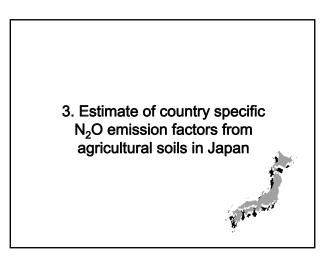

3014120	g factors for water regin	42			14019-10				
	Natur Bugines		Appropriation Disagrouped one						
		factor factor	ton: top	Scaling Factor Stiff of	1.m				
الموقورة			- 4						
	Categories Brand	35	N 0454(#	1	479138				
ingent.	Investigation and a sector			0.04	++++++				
	tematenty basis) - astight annual			1.11	4.41.61.84				
	Regile instit		63141H	1.01	8.214.21				
hat	Okryphiptonia	8.2 ⁴		8.08	0.16.0 (4)				
	Deal note:			8.81	101				
			Benefit (1		ta Lectories real		_	_	_
Scaling factors for preseason			We are regime prior to the orbit of the balance of the second sec		farer lider	time	Brages	Read and a state	
		1			Serve City		Serve CR.		
ater r	egime		intelation a		-			1.1	18.1
				1.000		4.0	11.14	148	196-4
		1 mar 1	lif jum				E	1.00	tei-:

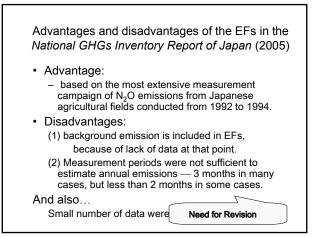

Inventories	6	
5.4 CH4 EMISSIONS FROM F ng factor for organic amendments		TION
Equation 5.3 Adjusted CH ₂ emission scaling factors for or $M_{d}^{-1} = \left(1 + \sum_{i} ROA_{i} \bullet CROA_{i}\right)^{1/9}$	ANC AMENDALISTS	
TAR	1631	0.00000
TARE DEFAULT CONVERSION FACTOR FOR DET Organic anominant		
DEFAULT CONVERSION FACTOR FOR DUT	Conversion factor	Error rang 0.97 - 1.04
DEFAULT CONVERSION FACTOR FOR DET Organic amonthment	Conversion factor	Error rang
DEFAULT CONVERSION FACTOR FOR DET Organic mendment Store incorporated therity (~10 days) before culturation ²	Conversion Sector (CFOA) 1	Error raap 0.97 - 1.04
DEFAULT CONVERSION FACTOR FOR BET Organic manufacent Straw incorporated deeply (<30 days) before collication# Straw incorporated long (>30 days) before collication#	EXENT TAPES OF ORCAVE: AND Contraction further (CFOA) 1 E29	Error rang 0.97 - 1.04 0.20 - 0.40
DEFAULT CONVEXION FACTOR FOR DET Organic moniformat Stars incorporated therity (<30 days) before calibration ⁰ Stars incorporated ling (>30 days) before calibration ⁰ Compart	EXENT TYPES OF GREAKE, AND Conversion for the (CFOA) I E29 E05	Error rang 0.87 - 1.04 0.20 - 0.40 0.01 - 0.08


2. N2O from rice paddy fields in 2006 IPCC GLs

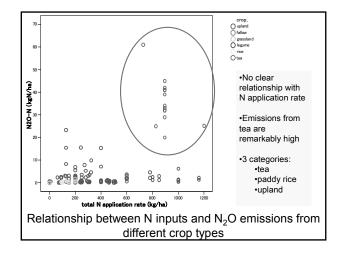

Materials & Methods:

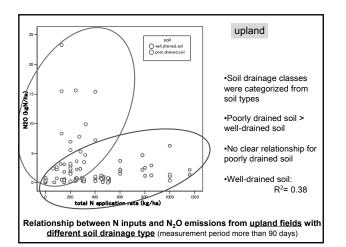
- Collected results of N₂O emission from rice fields published in peer-reviewed journals before 2004
- After excluding some extreme data (e.g., atypical field management), 113 measurements from 17 sites were used.
 - China (8 sites), India (1 site), Indonesia (1 site), Japan (4 sites), Philippines (2 sites), USA (1 site)

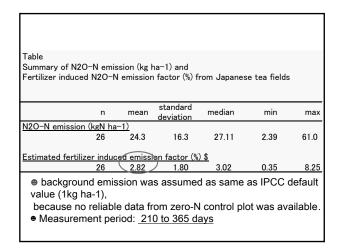


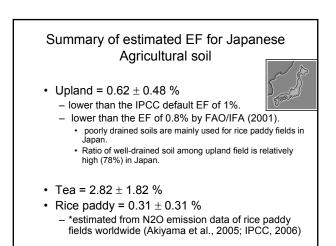


agricultural soil	(IPCC, 2	006)			
Toniz 11.1 Denois e l'annum l'accour se imace Dance V.O Lannum rena Manager fona					
Taxining Factor	Default Value	Uncertainty Easys			
17, for N additions from minoral forthcore, segment monutaness and corp residees, and N minoralised from minoral and as a result of loss of soil curbes. So N,O-N (kg N) ¹]	481	0.003-0.03			
IF in faeled to: fails (kg N/O-N (kg N/*)	(0.003)	10.000-0.004			
IF (10, 100) for superse separat cosp and groulend sells (bg N(O-N ha ²)	\checkmark	3-34			
EF you have for topical organic cosp and gravitant with (bg N/O N M ')	14	5-41			
EF	84	\$3624			
EF a tang on the wanpeness and based organic mations joon heart with (\$4,3,05 hr")	41	44343			
EF at the stagical segment famou with (Eg N/O-N har')	1	0-34			
EF our care for care (dairy, non-dairy and buffair), peolity and pige [log N,O-S-(log N)*]	443	0.007-8.08			
EF year, so for sheep and 'other autouts' (log N.O.N (log N)')	401	0.003-0.03			

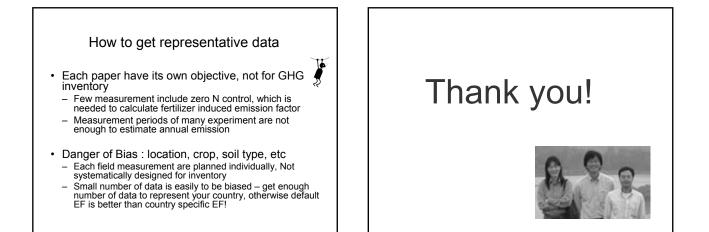



Dry Report of Ja Table 6-19 Nitrous oxide	emission factors, by type	of crop
Type of crop	Emission Factors [kgNjO-N kgN]	
Vegetables	0.00773	
Rice	0.00673	
Fruit	0.0069	
Tea	0.0474	
Potatoes	0.0201	
Pulse	0.0073	•Tier 2:
Feed crops	0.006	
Sweet potato	0.00727	country specific EF
Wheat	0.00486	: 13 different EFs
Buckwheat	0.0073	by crop type
Mulberries	0.0073	based on a report l
Industrial crops	0.0073	Tsuruta (2001)
Tobacco	0.0073	


Collected data


- N₂O emissions from Japanese agricultural fields
 - 246 measurements from 36 sites
 - reported in peer-reviewed journals and research reports, published before 2005.

					*	8) 5) 5)
Table Summary of N2O-N en		لمت			7. 1	
fertilizer induced N2O-			Japanese i	upland field	except tea	filed)
measurement period m						
soil drainage #	n	mean	standard deviation	median	min	max
N2O-N emission (kgN ł	na−1)					
well drained soil	67	1.03 a**	1.14	0.61	0.09	6.28
poorly drained soil	35	4.78 b	5.36	2.88	0.07	23.3
Fertilizer induced N2O-	-N emiss	sion factor (%)				
well drained soil	15	(0.32 a**	0.49	0.16	0.07	2.02
poorly drained soil	9	1.40 b	0.95	1.26	0.57	3.30
estimated		\frown				
emission factor for		(0.62 \$)	0.48 \$	\$		
e p	boorly (drained soil	> well-	drained so	oil	
EF for upla	nd = 0	.62 ± 0.48 %	(weighte	ed by area	of soil ty	(pe)
		ement perio				• •
assuming that me	ost of the f	ertilizer-induced N2 because dat	20 emission sh	ould be include	d in this perio	d,

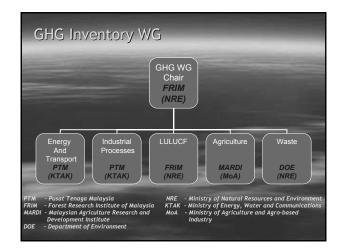


 4. Issues related to compiling GHG database for inventory work
 ~ estimate EF from papers with field measurement data

Missing information

- Lack of basic information in many papers

 soil type, soil property, type and amount of chemical and organic fertilizer, etc
 - impossible to calculate total emission
 - Only average flux is shown, but measurement period is not stated.
 - Only emission from fertilizer applied area of band application is shown, but not emission from entire field.



Presentation Outline

- ✓ NC2 Operational Framework
- ✓ GHG Inventory WG
- ✓ NC2 Inventory Status
- \checkmark NC2 Constraints and Gaps
- ✓ NC2 Agriculture Inventory
- \checkmark Agriculture Constraints and Gaps
- \checkmark Agriculture Activity Data and Assumptions
- ✓ Agriculture Inventory
 ✓ INC and NC2

NC2 Operational Framework Project Steering Committee Project Management Group & Secretariat Technical Revi Committee Vulnerability & Adaptation Working Group GHG Inventory Working Group Mitigation Working Group Energy & Transport Agriculture Forestry Energy & Transport Biodiversity Public Health Industrial Processes Industrial Processes Water Resources Agriculture Agriculture Energy LULUCE LULUCE Waste Waste

Sectors	Status	CO ₂ Equivalent (Gg)	
		Emissions	Removal
Energy	Finalised	155,588	
Industrial Processes	Finalised	20,365	
Agriculture	Finalising	5,906	
Land Use Change and	Finalised		200 500
Forestry	rinalised		386,566
Waste	Finalising	23,417	
Total (emission only)		205,276	
Net Total			181,290

INC - Level Assessment Current Year Level Estimate (Gg Assessment CO₂ Eq.) (%) Landfills 21.375 22.8 22.8 Transporte 18,083 22.3 45.1 Industrial 12.453 18.8 63.9 Fugitive emission- O&G 12,453 13.0 76.9 Flooded rice fields 3,014 82.4 5.5 Cement production 2,790 5.2 87.6 Wastewater-Industrial Residential & commercial 1,296 92.4 4.8 95.5 882 3.1

NC2 - Level Assessment						
Level Assessment Results	Current Year Estimate (Gg CO ₂ Eq.)	Level Assessment (%)	Cumulative (%)			
Energy industries	37,126	18.9	18.7			
Transport	35,587	17.9	36.6			
Fugitive emission –CH4 (oil &gas)	28,329	14.3	50.8			
Manufacturing & construction	28,329	12.2	63.0			
Solid waste disposal	21,122	10.6	73.6			
Transformation & military	18,018	9.1	82.7			
Mineral products	9,671	4.9	87.9			
Metal production	6,392	3.0	90.8			
Energy Residential and Commercial	3,947	2.0	92.8			
Chemical products	2,340	1.0	93.9			
Rice cultivation	1,861	0.9	94.9			
Industrial wastewater	1761	0.9	95.7			

Gaps and Constraints	Description	Potential Measures for improvement	
1. Data Organisation	Mismatch in sectoral detail across different published documents Inconsistency in top-down and bottom-up data sets for same activities Data scattered in many agencies	Design consistent reporting formats Design consistent reporting formats Database for reporting the raw data according to IPCC requirements	
2. Non-availability of relevant data	Data for refining inventory to higher tier levels	Data depths to be improved, some requires data surveys	
3. Non-accessibility of data	Lack of institutional arrangements for data sharing – time consuming to compile data Time delays in data access Proprietary data for inventory reporting at Tier II and Tier III level	Establish protocols and establis: effective networking with data providers Awareness generation Involve industry and monitoring institutions	

NC2 - Constraints and Gaps ... 2

Gaps and Constraints	Description	Potential Measures for improvement	
4. Technical and institutional capacity needs	Training the activity data generating institutions in GHG inventory methodologies and data formats	Arrange extensive training programs	
5. Non-representative emission factor/coefficients	Inadequate data for representative emission measurements in the sectors	Conduct measurement for key categories and develop local EF	
6. Resources to sustain national communication effort	Sustain and enhance research networks established under Initial and second National Communications	Regular Updates are required to ensure sustainability of GHG Inventory	
7. Continuity of expertise	Those involved in inventory and NC works are at retirement age. Further NC works will be affected	Planned and encouraged involvement of junior and new officers in NC works	

NC2: A	Agriculture Inventory
	 GHG Sources: ✓ Domestic Livestock ✓ Flooded Rice Cultivation ✓ Field Burning of Agricultural Residues ✓ Agricultural Soils * Prescribed Burning of Savannas
Revised 1996 IPC	2C Guidelines

Agriculture - Constraints and Gaps Sectors Description Potential Measures for improvement Non uniform of available data eg: cattle / beef cattle / dairy cattle Non-availability of relevant data eg: AWMS Local EF 1. Domestic Livestock Extrapolation Workshops and local experts IPCC default values Otata not in the form required by IPCC guideline eg: water regimes Local EF 2. Flooded Rice Workshops and local expert IPCC default values and local study Lack of available data eg: burning of rice straw / season / irrigation status 3. Burning of Agriculture Workshops and local experts Residues 4. Agriculture Soils Lack of local data available - FAO statistics

NC2: Agriculture Invento	ry
--------------------------	----

Livestock	1999	2000	2001	<u>2000's</u>
Buffaloes	149,554	142,042	140,000	143,86
Non-dairy cattle	679,170	697,197	705,062	693,81
Dairy cattle	35,746	36,695	37,109	36,51
Sheep	151,537	15,7070	129,108	145,905
Goats	237,680	237,634	247,338	240,884
Horses	4,500	4,000	3,900	4,13
Swine	1,954,940	1,807,590	1,972,530	1,911,687
Poultry	121,000,000	123,650,000	149,586,000	131,412,000

	2: Agric				,			
1. Do	mestic Live	stock -	Notes	s & As	sumoti	ons		
	6% of the tota							
						g JPH s	tatistics)	
2.	Dairy cattle de							
-							tatistics)	
	Manure manages assumptions ((AWMS) Dasec		owing Expert es	timate)	
	assumptions (<i>70).</i>					sumate)	_
						Pasture		
		Anaerobic	Liquid	Daily			Lised Fuel	Other
		Anaerobic Lagoon	Liquid System	Daily spread	Storage and Drylot	Pasture Range and Paddock		Other System
	Animal Non-dairy Cattle (%)	Lagoon 30	System 0	spread 0	Storage and Drylot 30	Range and Paddock 40	0	System 0
_	Non-dairy Cattle (%)	Lagoon 30 (0)	System 0 (0)	spread 0 (16)	Storage and Drylot 30 (14)	Range and Paddock 40 (29)	0 (40)	System 0 (0)
		Lagoon 30 (0) 30	System 0 (0) 0	spread 0 (16) 0	Storage and Drylot 30 (14) 40	Range and Paddock 40 (29) 30	0 (40) 0	System 0 (0) 0
	Non-dairy Cattle (%) Dairy Cattle (%)	Lagoon 30 (0) 30 (6)	System 0 (0) 0 (4)	spread 0 (16) 0 (21)	Storage and Drylot 30 (14) 40 (0)	Range and Paddock (29) 30 (24)	0 (40) 0 (46)	System 0 (0) 0 (0)
	Non-dairy Cattle (%)	Lagoon 30 (0) 30	System 0 (0) 0	spread 0 (16) 0	Storage and Drylot 30 (14) 40	Range and Paddock 40 (29) 30	0 (40) 0	System 0 (0) 0
	Non-dairy Cattle (%) Dairy Cattle (%)	Lagoon 30 (0) 30 (6) 0	System 0 (0) 0 (4) 0	spread 0 (16) 0 (21) 0	Storage and Drylot 30 (14) 40 (0) 95	Range and Paddock 40 (29) 30 (24) 5	0 (40) 0 (46) 0	System 0 (0) 0 (0) 0
	Non-dairy Cattle (%) Dairy Cattle (%) Poultry (%)	Lagoon 30 (0) 30 (6) 0 (1)	System 0 (0) 0 (4) 0 (2)	spread 0 (16) 0 (21) 0 (0)	Storage and Drylot 30 (14) 40 (0) 95 (0)	Range and Paddock 40 (29) 30 (24) 5 (44)	0 (40) 0 (46) 0 (1)	System 0 (0) 0 (0) 0 (52)
	Non-dairy Cattle (%) Dairy Cattle (%) Poultry (%)	Lagoon 30 (0) 30 (6) 0 (1) 0	System 0 (0) 0 (4) 0 (2) 0	spread 0 (16) 0 (21) 0 (0) 0	Storage and Drylot 30 (14) 40 (0) 95 (0) 50	Range and Paddock 40 (29) 30 (24) 5 (44) 50	0 (40) 0 (46) 0 (1) 0	System 0 (0) 0 (0) 0 (52) 0

NC2: Agrie			·	
Year Area	1999	2000	2001	2000's
Granary	394076	391012	375116	386,735
Non granary	214796	223790	221186	219,924
Upland	83517	83900	77332	81,583
Total	692389	698702	673634	688,242
Source: Paddy St Revised 1996 IPCC Guidelin		aysia 2002, D	ΟA	

NC2: Agriculture Inventory	lture Invento	rv
----------------------------	---------------	----

- 2. Rice Cultivation Notes & Assumptions
- 1. Non granary area include rainfed and small scale irrigation schemes
- 2. All rice in granary areas under continuous flooding
- 3. Non granary areas are under continuous flooding (40%), subjected to flooding (30%) and drought (30%)
- 4. No organic amendment added to rice field 5. Thailand emission factor (EF) was used for flooded rice methane emission

Revised 1996 IPCC Guidelines

			Inventor	-	-
Category		Sub-Categ	ory	Scaling Factors	Hectareage
Upland		None		0	81,583
		Continu	ously flooded	1	386,735
	Irrigated	Intermittently	Single aeration	0.5 (0.2-0.7)	
Lowland		flooded	Multiple aeration	0.2 (0.1-0.3)	
		Continu	ously flooded	1	87,970
	Rainfed	Flo	od prone	0.8 (0.5-1.0)	65,977
		Drou	ght prone	0.4 (0-0.5)	65,977
	Deep water	Water de	pth 50-100 cm	0.8 (0.6-1.0)	
	Deep water	Water de	epth > 100 cm	0.6 (0.5-0.8)	
Revised 1996 IP0	CC Guidelines			Total Lowland	606,659

3. Field Burni Rice Produc	ng of Agricu			
Year	1999	2000	2001	2000's
Granary	1,456,505	1,465,735	1,437,659	1,453,300
Non granary	521,538	610,520	596,561	576,206
Upland	58,598	64,649	60,775	61,341
Total	2,036,641	2,140,904	2,094,995	2,090,847
Source: Paddy Si		aysia 2002, D	OA	

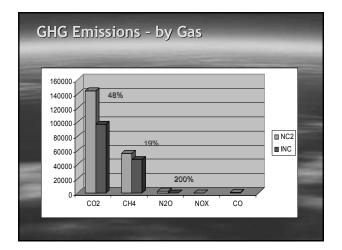
NC2: Agriculture Inventory

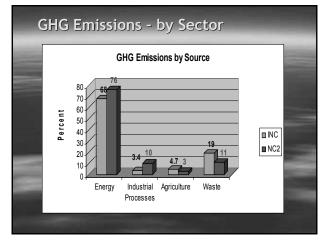
Revised 1996 IPCC Guidelines

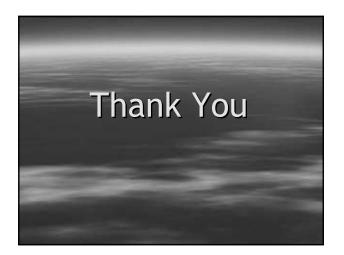
- 3. Field Burning of Agriculture Residues Notes & Assumptions:
- 1. Amount of rice straw is derived through rice yield and harvest index (IPCc default,
- 2. No rice straws are burned in upland area (Expert estimate)
- 3. An average of 20% and 10% of straw are burned in granary and rainfed non-granary area respectively. (Expert estimate

N Fertilizer Consumption (to	onnes)			
Year Fertilizer	1999	2000	2001	2000's
Ammonium Nitrate	52200	55600	5000	526
Ammonium Phosphate	9700	5800	6100	72
Ammonium Sulphate	116100	104000	10000	1067
Urea	94800	134000	134000	1209
Other Complex Fert (N)	69800	39000	35000	479
Other Nitrogenous Fert	19800	10188	6817	122
Total (Nitrogenous Fert)	362,400	348,588	331,917	1,311,87
Cultivation on Histosol (Ha)				
Pineapples	4053	3636	4267	3,985

NC2: Agriculture Invent	ory	
4. Agriculture Soils – N Fe	rtilizers	
Fertilizers	N Content (%)	
Ammonium Nitrate	33	
Ammonium Phosphate	20	
Ammonium Sulphate	20.6	
Urea	46	
Other complex N Fertilizers	15*	
Other nitrogenous fertilizers	15*	
* Estimated		
Source: FAOSTAT 2007		
Revised 1996 IPCC Guidelines		

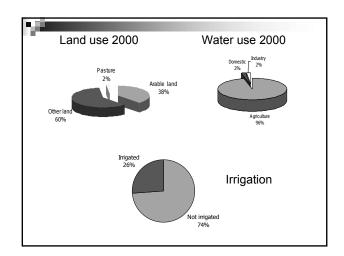

NC2: Agriculture Inven	itory
4. Agriculture Soils – No	tes & Assumptions
1. Complex N and other N 15% N	fertilizers contains (Expert estimate)
2. 50% of the pineapples b histosol (peat) soil <20 y	
	(Expert estimate)
	-
Source: FAOSTAT 2007	
Revised 1996 IPCC Guidelines	

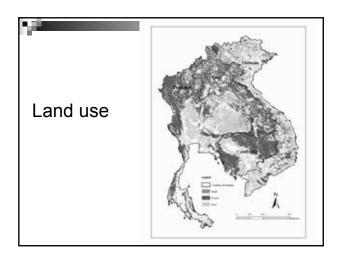

Country Inventory Year	Malaysia 2002							
National generalization gas increasing of an controlled by the Mantroal Protocol and				dennes	h by stake	et ali gree	abrese pros	
Gesenhense ges sonre auf sink rategories	CO; ministi (Cg)	CO; reminals (Gg)	(H) (H)	3.0 (Gg)	340. GE	00 16p	33/70Ci (5g)	50. (Cg)
4 Apricalmer			285			13		
A Entrit featuration	10000		1	/				
3 Manue management	1.000	1.1	39			5		
C. Rice railwattion	1	1		16			5	-
D. Ageinstreal sola	2000					-		
E. Prevariant Intering of mensionly	1000	_	0		-		0	
P. Polisturing of apicolitatel emilian-			1		1	- 21	- 0	
O. Other (plane specify)	1				1	1		

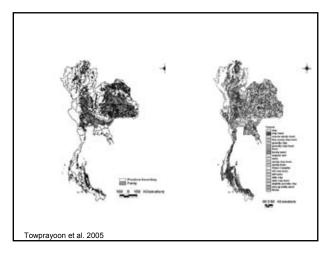

Invent	ory -	- CO ₂ Equivalents (Ver. 2)	-		
Country December: Your	bilesi					
PCC Searce Category	Sector	Scores Categories to be Assessed in Key Source Category Analysis ¹	Applicable Granthcase Gar	Tatal abasists estimates incl. LIA.105 ment. pract fice.002440	Load Aperament Sect. ULUUU File	Consider Javal or EJE JK
Son	San.	Sen		1,915.1		
- 40	Aproham	04 Enlesors fait Ria Pictuctur	DH.	101	NN	- 2
40	Apostan	100 Direct and Indirect Encoders from Agricultural Scie DNA Distances from Direct Average and Director	40	1711	215	3
4.8	Aprilan	Lustah	04	1021	6.05	1.0
48		N20 Emission from Manare Management	100 041	165	核热	5
48		CH4 Encours fam Varan Varagenart		483	117	8
41		1014 Emesians Tam Agrication Residue Duming	ÓN.	- 21.1	0/0	
UF.	Agetubura	100 Energy for Agentus Rappy Buring	140	11	- 195	1

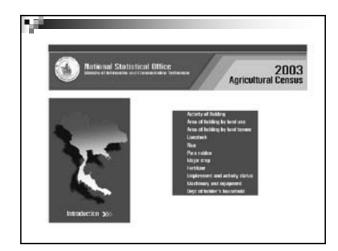
1.410 11 hours	ury of Valence Greeks	are find	-		1100	-	,
	married do Static		1.1	- 18	w		
				62	· · · ·	140	
-	Edgewa	4	\$	44	5	ił;	16
1 Long-	Calicophenica Registre researce in term real unitage Registre researce in term of A gas dysteres Receipt of traincost Receipt of traincost Receipt of the second	9.40	967	1) 36 1	10 10	*11	
2 Jakortal Pascal	Count production	-00	-11				
3. Aptoins	 Descents: Research want to descentions and scenario testagements fluxibilities (see Seles). Barrag of spire (Barrill resilies). 			11 12 14	14 113 14	****	36.0
t. Byer	Loadillo Dispersio & consecutivi instanciana tradicate Settorical encodes monitoret			100	8.8 1.8 1.8		
L Last Up Olange gui Foreigy	Comparison format and other wordly bination play's filling) France and generical continuous, The discharging of firmer	-96.22 ⁴ 1949	-			1.00	. 4.5
Tend over	dia tabé	10.00	140	1.09	100	4.161	-
Not Dead in	And address in the local data	18-121				1.1	

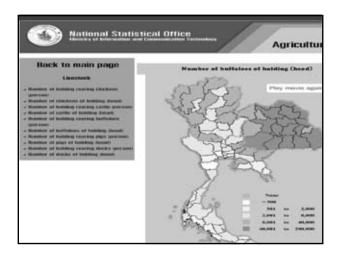
NC and NC2 Draft Inventory (Gg)								
GHG	INC	NC2 (Ver.2)						
CH4	(329.3)	(153)						
Enteric Fermentation	75	44						
Manure Management	/5							
Rice Cultivation	252	89						
Field Burning	2.3	1						
N ₂ O	(0.054)	(9)						
Manure Management	-	3						
Agriculture Soils	-	6						
Field Burning	0.054	0						
NO _x	3	1						
Field Burning		1						
CO	-	21						
Field Burning		21						
CO2 Equivalents	6,932.0	5,906						

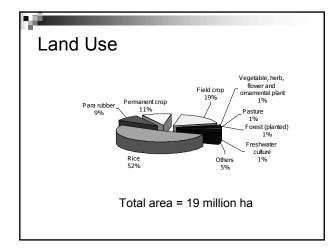


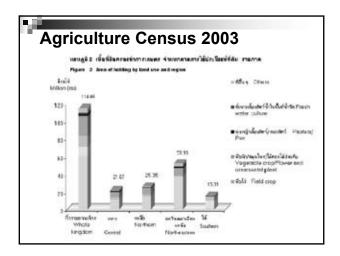


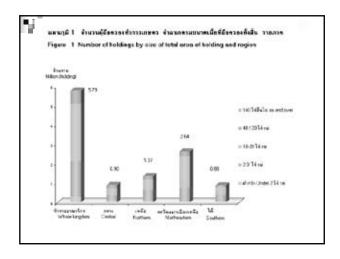


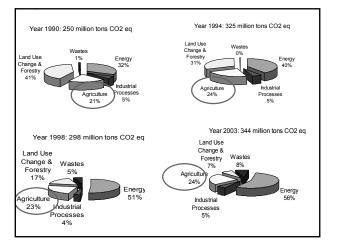


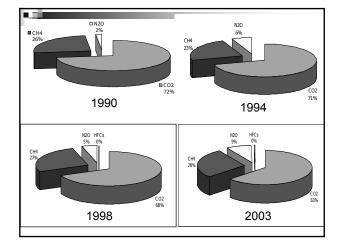

Amnat Chidthaisong Joint Graduate School of Energy and Environment

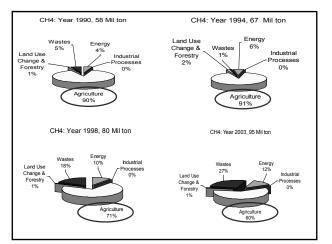


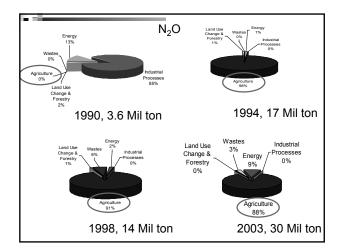


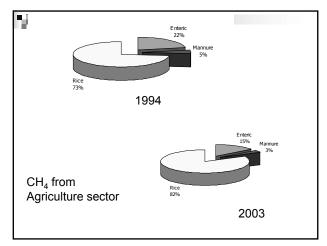


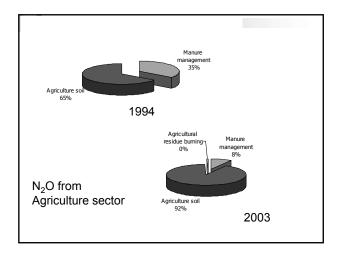


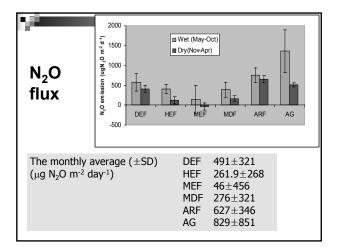


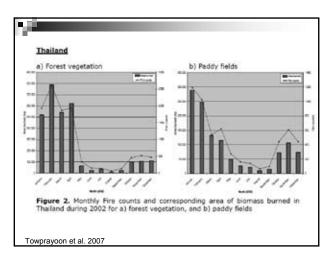


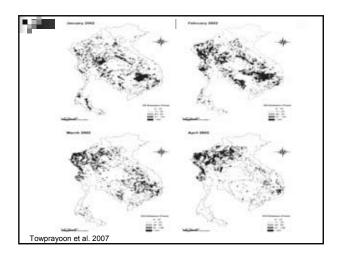


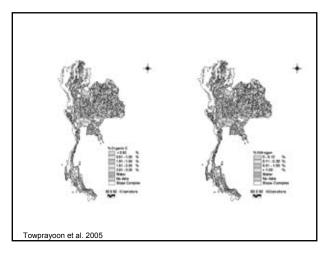


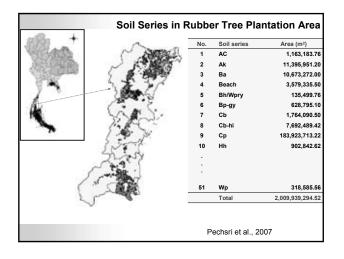


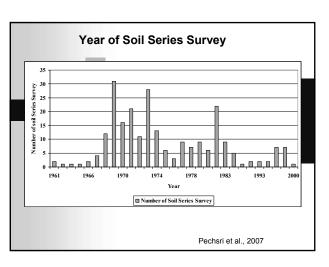


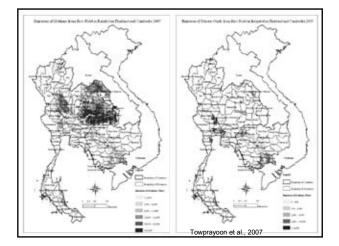


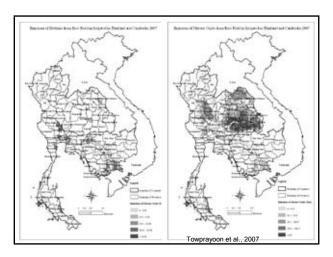

Ŋ,	Thailand KCA				
	Level Assessment Results	Current Year Estimate (Gg CO ₂ Eq.)	Level Assessment (%)	Cumulative (%)	
1.A.1	CO2 Emissions from Stationary Combustion	45529	20.33%	20.33%	
4.C	CH4 Emissions from Rice Production	44321	19.79%	40.11%	
1.A.3	CO2 Mobile Combustion: Road Vehicles	39920	17.82%	57.94%	
1.A.2	CO2 Manufacturing Industries and Construction	30824	13.76%	71.70%	
2.A	CO2 Emissions From Cement Production	14920	6.66%	78.36%	
4.A	CH4 Emissions from Enteric Fermentation in Domestic Livestock	13220	5.90%	84.26%	
4.D	N2O (Direct and Indirect) Emissions from Agriculutural Soils	10983	4.90%	89.17%	
4.B	N2O Emissions from Manure Management	5949	2.66%	91.82%	
1.A.4	Other Sectors: Agriculture	4849	2.16%	93.99%	
1.B.2	CH4 Fugitive Emissions from Oil and gas Operations	3731	1.67%	95.65%	


LULUCF		
LULUCF Level Assesment Results (LULUCF Category Key Sources Only)	Current Year Net Estimate (Gg CO ₂ eq.)	LULUC F Level Assessm ent (%)
CO2 from conversion to Cropland	59,396.84	16.33%
CO2 emission from Wood and fuel wood consumption	40,180.51	11.05%
CO2 removals from changes in forest and other woody biomass stocks	-39,101.60	10.75%


Additions in SNC Emission factor KCA QA/QC Agricultural residue burning







Conclusions

- Agriculture is the second most important sector as greenhouse gas emission source
- Main gas is CH4 (>80% of total CH4 emission in 2003)
- Also the main N2O sources (livestock & manure management)

Catagoni		CH ₄	N ₂ O	NOx	CO
ey Category	A Enteric Fermentation	Ø			
lycic for CHC	1 Cattle	0	I		
ysis for GHG	2 Buffalo 3 Sheep	0	-		
	4 Goats	0	-		
ventory in	5 Camels and Llamas	0			
	6 Horses	ě			
Iture Sector	7 Mules and Asses	ö			
	8 Swine	0			
C – Viet Nam	9 Poultry	Ð			
	10 Other (please specify)	0			
	B Manure Management	Ø			
	1 Cattle	0	I		<u> </u>
	2 Buffalo 3 Sheen	0	<u> </u>		
Δ.	3 Sheep 4 Goats	0 0	-		
	5 Camels and Llamas	0			
rould.	6 Horses	0			
2010102	7 Mules and Asses	ē			
and the second se	8 Swine	õ			
The Add in	9 Poultry	Ø			
	10 Anaerobic	Ð	8		
and of the local division of the local divis	11 Liquid Systems	Ø	0		
and the second second	12 Solid Storage and Dry Lot	Ð	0		
And a state of the	13 Other (please specify)	0	Ð		
10/01/80/15 ***	C Rice Cultivation	Ð	-		
	1 Irrigated	0	-		
Contraction of the local division of the loc	2 Rainfed 3 Deep Water	0	1		-
	4 Other (please specify)	0	1		
and the second of	D Agricultural Soils	ñ	0		
Contraction of the local division of the loc	E Prescribed Burning of Savannas		Ð	Ø	Ð
the second se	F Field Burning of Agricultural Res				
State of the local division of the local div	1 Cereals	ø		Ð	Ð
the second se	2 Pulse	Ð		0	Ð
the second se	3 Tuber and Root	e		Ð	0
and the second se	4 Sugar Cane	0	I	8	Ð
of the local division of the local divisione	5 Other (please specify) G Other (please specify)	0 0		0	ව

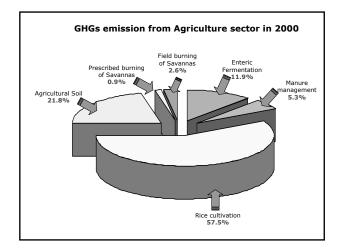
_		-	-	
Fm	iccin	n fa	ctors	
	19910	/// /u		·

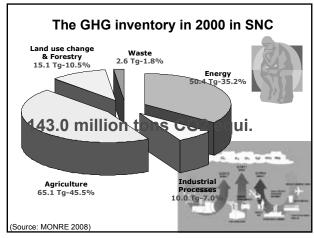
1. Livestock (emission factors for CH₄)

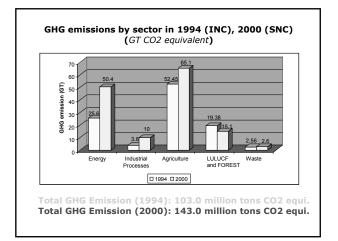
Unit: kg/head/yr

	Enteric fermentation	Manure management
Dairy cattle	56	27
Non-dairy cattle	44	2
Buffalo	55	3
Goats	5	0.22
Horses	18	2.18
Swine	1	7
Poultry	0	0.023

Source: the revised 1996 IPCC Guidelines for National GHG Inventories


Country – Specific Emission Factors


Rice cultivation (seasonally integrated emission factors for continuously flooded rice without organic amendment of CH_4) Unit: g/m²

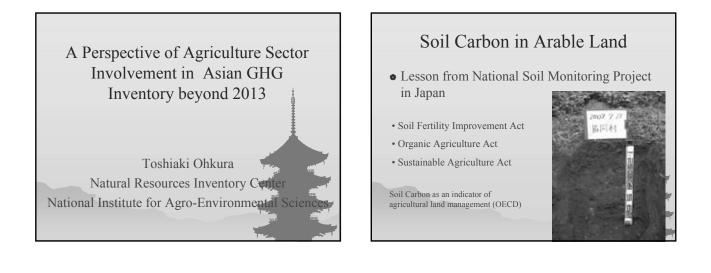

	The North	The Central	The South
Continuously Flooded	37.5	33.59	21.7
Intermittently flooded – single aeration	18.8	16.79	10.85
Flood prone	30	26.87	17.36

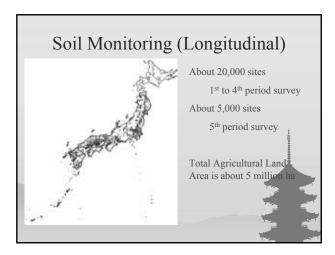
	Agrie	cultu	re for	SNC		
	-				Uni	t: Gg
Sub-sector	CH ₄	N ₂ O	CO	NO _x	CO ₂ equivalent	%
Enteric Fermentation	368.12				7,730.54	11.9
Manure Management	164.16				3,447.30	5.3
Rice Cultivation	1,782.37				37,429.77	57.5
Agricultural Soil		45.87			14,219.70	21.8
Prescribed Burning of Savannas	9.97	1.23	261.71	4.46	590.67	0.9
Field Burning of Agricultural Residues	59.13	1.39	1,214.68	50.28	1,672.63	2.6
Total	2,383.75	48.49	1476.39	54.74	65,090.61	100

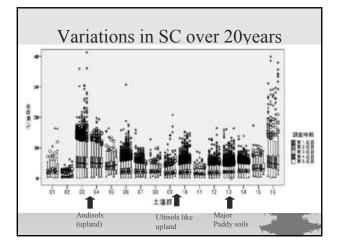
National GHG Inventories in

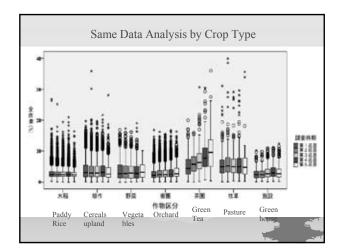
Conclusions

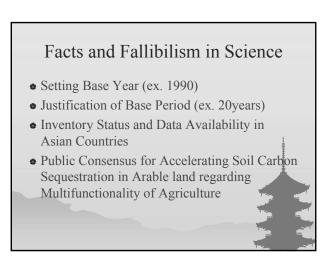
- > At present, Agriculture is the biggest GHG emission source in Viet Nam
- > In 2000, GHG emission from this sector was 65.1 million tonnes of CO_2 equivalent, representing 45.5% of total emissions
- > There are some uncertainties associated with activity data in Agriculture sector
- Most of emission factors in 2000 GHG Inventory are from the revised 1996 IPCC Guidelines for National GHG Inventories. Due to using these default emission factors, there are some uncertainties that should be verified, analyzed and made clear in the coming time.

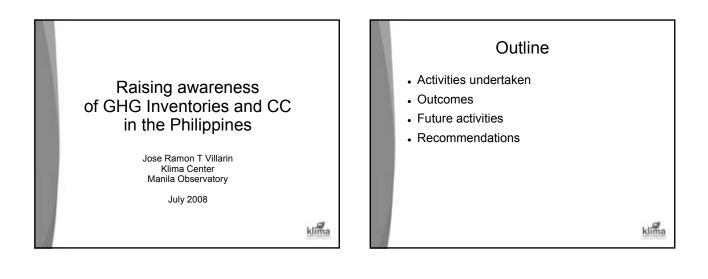


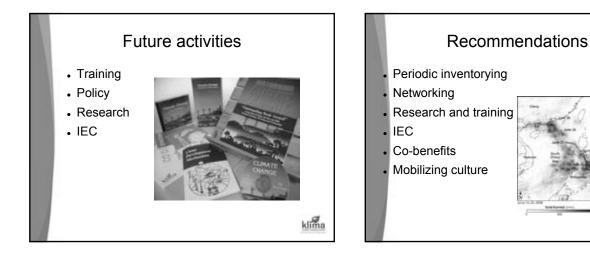

GHG Inventory Issues in SEA countries: Agriculture Sector

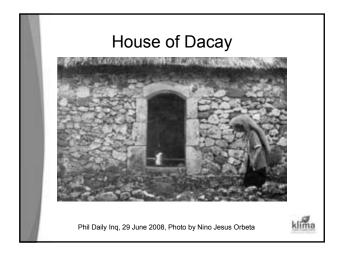

The 6th Workshop of GHG Inventories in Asia (WGIA6) 16-18 July 2008, Tsukuba, Japan


Issues	Component 4 (Agriculture)
Common issues on emission factor (EF)	- rice cultivation – how to categorize water regime for rice (AD)
and activity data (AD) that need to be addressed	- EF and AD (related to water mgt. and amount of fertilizer input); N ₂ O emissions from Cropland; soil C from cropland (soil category is broad)
	- crop residue ratio for use in biomass burning GHG inventory - enteric fermentation: enhanced
	characterization - need local EF for manure
	management for different AWMS


nofor to Hulzo Dotohogo of IDDI for
-refer to Huke Database of IRRI for rice AD based on rice ecosystems
- Encourage participating countries to develop EFs using measured data
-collaborate with IRRI (for rice) and New Zealand LEARN Project (for livestock)
,







klima

KOREA'S EXPERIENCE IN AWARENESS RAISING ABOUT GHG INVENTORY AND CLIMATE CHANGE

THE 6TH WORKSHOP ON GHG INVENTORIES IN ASIA(WGIA6) 16-18 JULY, 2008, TSUKUBA, JAPAN

Kyonghwa Jeong Korea Energy Economics Institute

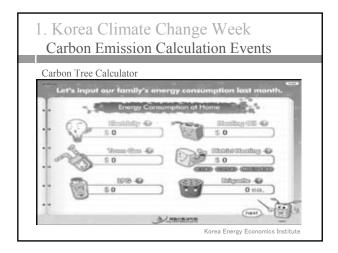
Contents

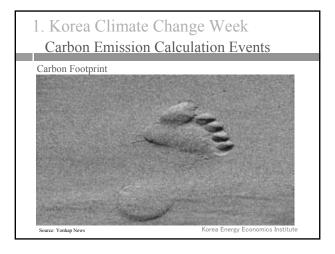
- Activities in Awareness Raising about GHG Inventory and Climate Change in Korea
- Outcomes of the Activities
- The Way Forward

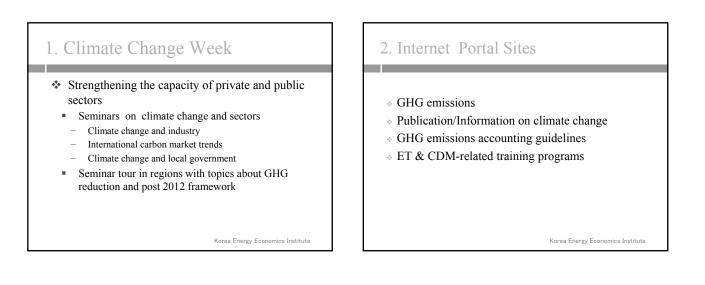
Activities in awareness raising about GHG inventory and climate change in Korea
Korea Climate Change Week
Internet Portal Sites
Education

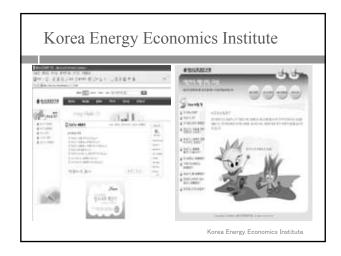
1. Climate Change Week

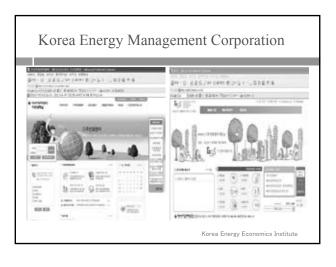
Performance of global warming
Exhibitions
Carbon Neutral Campaign
CO2 emission calculation events(Carbon Tree Calculator)

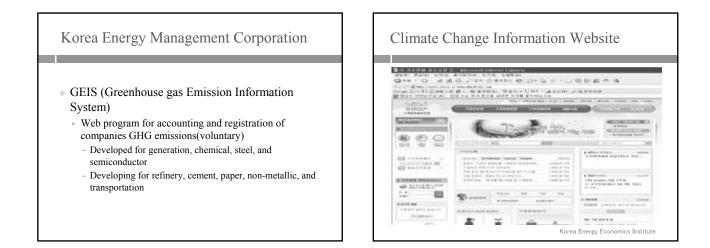

Korea Energy Economics Institute


Korea Energy Economics Institute


Korea Energy Economics Institute







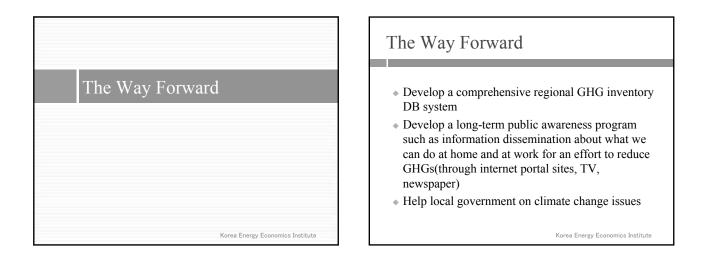
3. Education

- Integrating climate change issues into the curriculum and developing instructional materials
- Appointing 3 universities as research institutes specialized in climate change and GHG inventory
 - Seoul National University : GHG emission inventory
 - Gyemyong University : GHG reduction policy
 - Korea University : Assessment of climate change effect and adaption

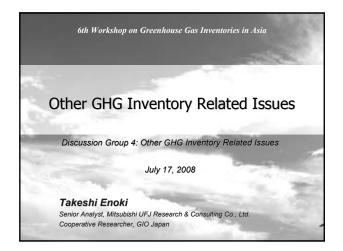
Korea Energy Economics Institute

Outcomes of the activities

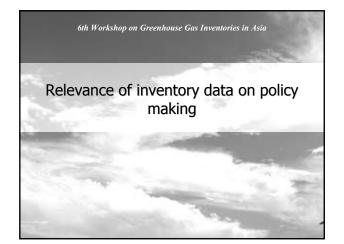
Outcomes of the Activities


- Raising public awareness about global warming by integrating climate change issues into the curriculum and developing instructional materials
- Facilitating public participation in actions to reduce GHGs by launching carbon neutral campaign and events


Korea Energy Economics Institute

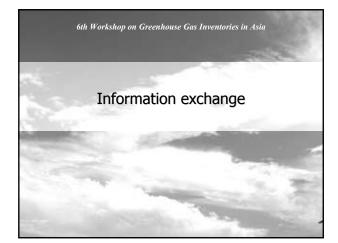

Outcomes of the Activities

- Facilitating public and private access to information about climate change and GHG inventory by opening user- friendly climate change portal sites and implementing web training programs for CDM and ET
- Strengthening the capacity of domestic industry on climate change convention by sharing industry's experience on climate change


Korea Energy Economics Institute

Roles of GHG Inventories in Policy Making Identify priorities for reduction policies Developing an accurate GHG inventory can help define priorities and set objectives for reducing emissions. Evaluate reduction policies An accurate, complete inventory is necessary to evaluate GHG emissions mitigation policies on current levels of emissions. Forecast emissions The GHG inventory is the basis for forecasting future emission levels to determine which emission sources might require further controls.

Alt Versslag an Greenhouse Gus Inventories in Adversaria of Control of Control



Awareness-raising in Japan

- Awareness of the climate change issue and the amount of emissions is very high in Japan, thanks to the "Team Minus 6%" campaign.
- The name is a reference to Japan's commitment to reduce its GHG emissions to 6% below 1990 levels.
- Public announcements on the national GHG emissions inventory are made every year showing the emissions from all major sources.
- Industries emitting over 3,000 tons CO₂ equivalent are required to report amount of emissions and their emissions are made public.

The "Team Minus 6%" campaign

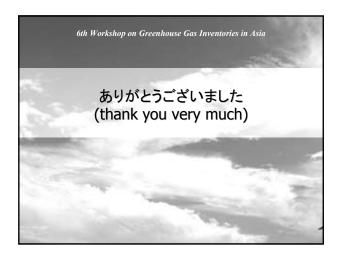
- Japan promotes "Team Minus 6%" campaign through:
 - Media (television, internet, newspapers, etc.);
 - Distribution of pamphlets;
 - Holding of symposiums.
- Examples of campaigns under the "Team Minus 6%" :
 - Cool Biz, Warm Biz: encourages people to dress to keep cool in summer and warm in winter to reduce energy consumption in the workplace.
 - 1 kg-CO₂ reduction a day per person challenge
- "Team Minus 6%" website describes all campaigns and ways the public can reduce their emissions.

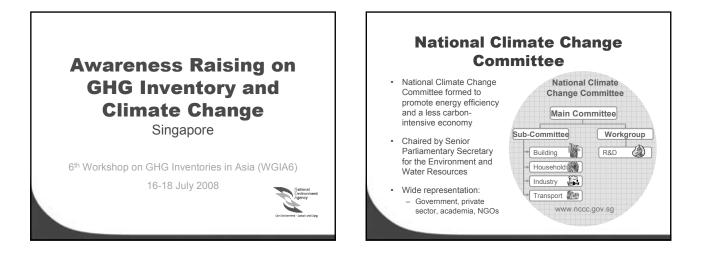
Benefits of Information Exchange

- Improve the quality of GHG inventories
 - ◆ Default emission factors in the IPCC Guidelines may not appropriately reflect national/regional circumstances in Asian countries. Using a countryspecific emission factor from an Asian country may be more appropriate.
 - Sharing of information improves efficiency in making improvements to the inventory.
- Explore possibilities to develop region/countryspecific methodologies and emission factors

Status of Information Exchange

➤ In Europe...

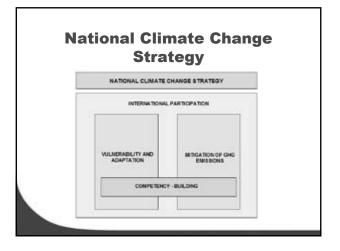

 The EU holds workshops that address challenges Member States face to improve specific issues together.

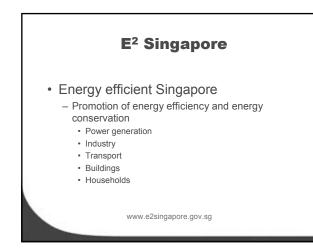

6th Workshop on Greenhouse Gas Inven

- > In Asia...
 - WGIA provides Asian countries a chance to exchange information, but more general information is presented and discussed.
 - Focusing on more specific issues during WGIA meetings may prove useful to Asian countries.

Summary

- > GHG Inventories is a useful tool for
 - Formulating/evaluating policies;
 - ♦ identifying CDM possibilities; and
 - Improving quality of data collection.
- Awareness is important so that people realize how much GHG is being emitted and can be involved in dealing with climate change.
- Information exchange on country-specific emission factors and methodologies can help improve our GHG Inventories.




National Climate Change Strategy

 Consultations with stakeholders: General public Industries and businesses

- Online consultation

- Dialogue sessions, consultation forum

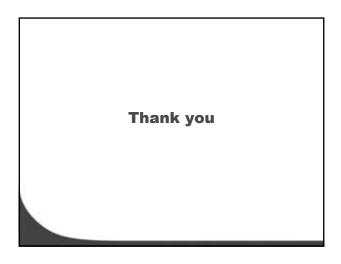
Industries and Businesses Sector

Key messages

- · Benefits of improving energy efficiency
 - \Rightarrow Companies can remain competitive
 - ⇒ Maximize profits
 - \Rightarrow Reduce GHG emissions

Activities

- Seminars on CDM
- Talks on energy efficiency
- Incentives e.g. for companies to carry out energy appraisals
- Profile success stories


Households, Transport Sectors

Key messages

- Impact of climate change
 - \Rightarrow Simple changes in lifestyle and habits can help to reduce carbon footprint

Activities

- 10% energy challenge draw for households
- Project carbon zero competition for schools, in partnership with Singapore Environment Council
- Climate change exhibition at Science Centre Singapore
- 'Go green with public transport' campaign by rail and bus operator

Key Source Category Analysis

Jamsranjav Baasansuren Greenhouse Gas Inventory Office of Japan (GIO) National Institute for Environmental Studies (NIES)

6th Workshop on Greenhouse Gas Inventories in Asia, Tsukuba, JAPAN July 16-18, 2008

Key source category

• A key source category is one that is prioritised within the national inventory system because its estimate has a significant influence on a country's total inventory of direct greenhouse gases in terms of the absolute level of emissions, the trend in emissions, or both.

 Identification of key source categories enables to prioritise available resources for preparing inventory and improve quality of overall estimates.

Methodology for identifying key source categories

• Quantitative (identify KSCs in terms of contribution to both the level and the trend in national emissions)

- Tier 1
- Fier 2 (accounts for uncertainty)

• Qualitative (identify KSCs not captured by quantitative analysis using qualitative criteria)

- mitigation techniques and technologies
- > high expected emission growth
- > high uncertainty
- unexpectedly low or high emissions

Tier 1 approach to identify key source categories

Level Assessment

Source category level assessment = Source category estimate / Total estimate

> $L_{x,t} = E_{x,t} / E_t$ (1)

Where

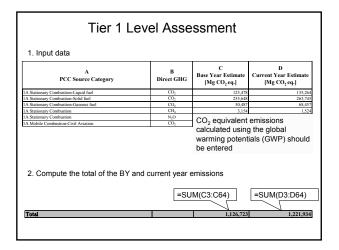
- $\begin{array}{l} \textbf{L}_{x_i}: \text{Level Assessment for source category x in year t} \\ \textbf{E}_{x_i}: \text{Emission estimate of source category x in year t} \\ \textbf{E}_t: \text{Total inventory estimate in year t} \end{array}$

Tier 1 approach to identify key source categories

Trend Assessment

Source Category Trend Assessment = (Source Category Level Assessment)• | (Source Category Trend - Total Trend) |

 $T_{x,t} = L_{x,t} \cdot | \{ [(E_{x,t} - E_{X,0}) / E_{x,t}] - [(E_t - E_0) / E_t] \} |$

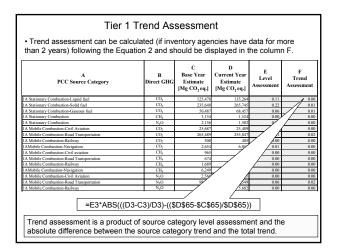

Where

T_{xt}: Contribution of the source category trend to the overall inventory trend L_{xt} : Level Assessment for source x in year t E_{xt} and E_{x0} : Emissions estimates of source category x in years t and 0, respectively

respectively \mathbf{E}_t and \mathbf{E}_0 . Total inventory estimates in years t and 0, respectively

Performing Tier 1 Assessment (without LULUCF) Tier 1 approach can be readily performed using a spreadsheet analysis. Separate spreadsheets are suggested for the Level and Trend Assessments. Tier 1 Level Assessment C Base Year D Current Year Estimate [Mg CO₂ eq.] Cumulative Total of Column E E Level A IPCC Source Categor [Mg CO2 eq.] Tier 1 Trend Assessment (%) D Current Yes Estimate |Mg CO2 eq Base Year Estimate [Mg CO₂ eq. A IPCC Source Cate Cumulati total of Column Trend

(2)

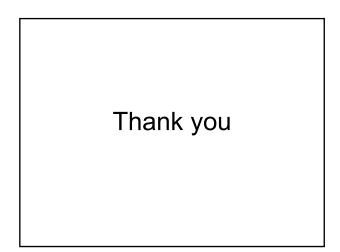


A IPCC Source Category B Direct GHC Base Year Estimate (Ng CO ₂ eq.) Current Year Estimate (Ng CO ₂ eq.) L Association (Ng CO ₂ eq.) <thl Association (Ng CO₂ eq.) <thl Associat</thl </thl 	n the column E.		laation i an	d should be	alopiayee
1A Stationary Combustion-Solid Ind. CO; 225.648 265.745 0 1A Stationary Combustion-Gracous Ind. CO; 30.647 0 66.757 0 1A Stationary Combustion-Gracous Ind. CO; 30.647 66.757 0 0 66.757 0 1A Stationary Combustion CH; 3.154 1.57 0 0 1.57 0 1A Stationary Combustion CO; 2.56.47 1.462 0 1.462 0 1.462 0 1.462 0 1.462 0 1.462 0 1.462 0 1.462 0 1.462 0 1.462 0 1.462 0 1.462 0 1.462 0 1.464 0 1.464 0 1.464 0 1.464 0 1.464 0 1.464 1.462 1.452 0 1.464 1.464 0 1.464 1.464 1.452 0 1.464 1.464 1.464 1.464 1.464 1.464 1.464 1.46			Base Year Estimate	Current Year Estimate	E Level Assessmen
A Stationary Combustion-Gasses field CO ₂ 59.467 68.457 0 I A Stationary Combustion CH ₄ 3.154 1.57 0 IA Stationary Combustion CH ₄ 3.154 1.57 0 IA Stationary Combustion N+0 2.156 1.67 0 IA Mobile Combustice-Cvil Availance CO ₂ 2.587 2.690 0 IA Mobile Combustice-Cvil Availance CO ₂ 2.65.497 2.690 0 IA Mobile Combustice-Cvil Availance CO ₂ 2.65.497 2.690 4.845 0 IA Mobile Combustice-Cvil Availance CO ₂ 5.607 4.845 0 0 IA Mobile Combustice-Cvil availance CO ₂ 2.654 6.854 0 0 IA Mobile Combustice-Cvil availance CH ₄ 0.65 4.125 0 0 IA Mobile Combustice-Stallary CH ₄ 1.639 4.577 0 IA Mobile Combustice-Svaliption CH ₄ 6.246 5.248 0 IA Mobile Combustice-Cvil Availance CVII					/ 0.11
1A Stationary Combustion CH 3.154 1.574 00 1A Stationary Combustion N:O 2.156 JCC 0 1A Mohile Combustion-Civil Aviation CO; 2.567 JCA00 0 1A Mohile Combustion-Roal Transportation CO; 2.664 JCA00 0 4.65 0 1A Mohile Combustion-Roal Transportation CO; 2.664 JCA00 4.65 0 1A Mohile Combustion-Roal Transportation CO; 5.60 4.65 0 1.84 0 1.84 0 1.84 0 1.84 0 1.84 0 1.84 0 1.84 0 1.84 0 1.84 0 1.84 0 1.84 0 1.84 1.84 0 1.84 0 1.84 0 1.84 </td <td></td> <td></td> <td></td> <td></td> <td>0.22</td>					0.22
A Stationary Combustion N:O 2.156 (JK2) (JK2) I A Mohle Combustion Cvil A viation CO2 25.847 Z4800 0 I A Mohle Combustion Foad Transportation CO2 256.488 Z45.847 0 I A Mohle Combustion-Railway CO2 500 48.848 0 I A Mohle Combustion-Railway CO2 500 48.84 0 I A Mohle Combustion-Railway CO2 26.64 6.854 0 I A Mohle Combustion-Cvi avaitation CI4 6.854 0 1.452 0 I A Mohle Combustion-Roal transportation CI4 6.654 6.812 0 I A Mohle Combustion-Roal transportation CI4 6.641 6.41 0 I A Mohle Combustion-Railway CI4 1.639 4.577 0 I A Mohle Combustion-Railway CI4 6.54 6.524 0 I A Mohle Combustion-Railway CI4 6.54 5.248 0 I A Mohle Combustion-Savaigtion CI4 6.54 5.248 0			20,101		0.06
1A Mohle Combustion-Grint Available CO; 25.637 24.689 0 1A Mohle Combustion-Road Transportation CO; 266.489 0.65.647 0 1A Mohle Combustion-Road Transportation CO; 560 465 0 1A Mohle Combustion-Road Transportation CO; 560 465 0 1A Mohle Combustion-Navigation CO; 2.654 6.854 0 1A Mohle Combustion-Svarigation CH; 965 4.125 0 1A Mohle Combustion-Road Pransportation CH; 6.684 641 0 1A Mohle Combustion-Sariagation CH; 1.689 4.977 0 1A Mohle Combustion-Sariagation CH; 1.689 4.977 0 1A Mohle Combustion-Sariagation CH; 1.689 4.237 0 1A Mohle Combustion-Sariagation CH; 1.528 0 1.235 0					0.00
IA Media Combustion-Roal Transportation CO2 265.489 Z/S 547 O IA Media Combustion-Raivey CO2 500 // 484 0 IA Media Combustion-Raivey CO2 500 // 484 0 IA Media Combustion-Raivey CO2 265.487 // 682 0 IA Media Combustion-Naivey CD1 685.4 0 // 682 0 IA Media Combustion-Cvii ariation CD4 676 / 641 0 0 / 641 0 IA Media Combustion-Raivey CD4 1.689 4.977 0 1AMedia Combustion-Raivey 5.248 0 1.599 4.577 0 IA Media Combustion-Raivey CD4 1.659 4.527 0 1.349 4.577 0 IA Media Combustion-Raivey CD4 1.659 4.527 0 1.349 4.577 0 IA Media Combustion-Raivey CD4 6.524 6 1.2555 0 1.349 1.2555 0 1.2555 0 1.2555 0					0.00
IA Mohle Combustion Railway CO; 500 685 0 AMdolic Combustion Newpitton CO; 2,654 6,854 0 AMdolic Combustion Newpitton CD; 2,654 6,854 0 A Mohle Combustion Newpitton CD; 6,854 0 4,125 0 IA Mohle Combustion-Voir January CD; 6,854 0 4,125 0 IA Mohle Combustion-Station Railway CD; 1, 6,364 6,41 0 6,41 0 IA Mohle Combustion-Stations-Railway CD; 1, 6,364 4,577 0 1,4064 6,5246 0 1,455 1,4064 5,248 0 1,4064 5,248 0 1,4064 5,248 0 1,4064 5,248 0 1,255 0 1,255 0 1,255 0 1,255 0 1,255 0 1,255 0 1,255 0 1,255 0 1,255 0 1,255 0 1,255 0 1,255 0 1,255 0					0.02
IAMohi Combustion-Naivaginon CO; 2.654 6.854 0 IAMohi Combustion-Cyril avatalom CH; 0.96 4.122 0 IA Mohi Combustion-Cyril avatalom CH; 0.76 641 0 IA Mohi Combustion-Roal Transportation CH; 1.07 641 0 IA Mohi Combustion-Raivay CH; 1.080 4.597 0 IAMohi Combustion-Raivay CH; 1.689 4.597 1.2355 0 IAMohi Combustion-Cyril Avataon CH; 0.524 0 1.2455 0					0.21
IA Mobile Combustion-Civil availant CH 965 4,125 0 IA Mobile Combustion-Koal Transportation CH 614 641 6 IA Mobile Combustion-Kalaway CH 1,889 4,977 0 IA Mobile Combustion-Navigation CH 6,288 4,577 0 IA Mobile Combustion-Navigation CH 6,249 5,248 0 IA Mobile Combustion-Civil Avaiation Np.0 2,669 1,235 0					0.00
IA Mohlic Combustion-Road Transportation CH, 674 641 0 IA Mohlic Combustion-Railway CH, 1.689 4.977 0 IA Mohlic Combustion-Railway CH, 1.689 4.597 0 IA Mohlic Combustion-Railway CH, 1.639 4.597 0 IA Mohlic Combustion-Naivagation CH, 6.549 1.2535 0 JA Mohlic Combustion-Crit Arization Ny.O 2.669 1.2555 0					0.01
1A Mohile Combustion-Railway CH ₄ 1,689 4,597 0 1A Mohile Combustion-Navigation CH ₄ 6,24 5,248 0 1A Mohile Combustion-Cviil Viration N ₂ O 2,469 1,255 0					0.00
IAMobile Combustion-Navigation CH4 6.24 5.248 0 IA Mobile Combustion-Civil Aviation N2O 2.669 1.255 0					0.00
1A Mobile Combustion-Civil Aviation N2O 2/69 1,255 0					0.00
					0.00
					0.00
	1A Mobile Combustion-Road Transportation	N ₂ O	98,257	78,549	0.06
					0.00
1AMobile Combustion-Navigation N2O / 2/265 6,245 0	AMobile Combustion-Navigation	N ₂ O	2,265	6,245	0.01

A IPCC Source Category	B Direct GHG	C Base Year Estimate [Mg CO ₂ eq.]	D Current Year Estimate [Mg CO ₂ eq.]	E Level Assessment
1A Stationary Combustion-Solid fuel	CO ₂	235,648	265,745	0.22
A Mobile Combustion-Road Transportation	CO ₂	265,489	255,847	0.2
A Stationary Combustion-Liquid fuel	CO ₂	125,478	135,264	0.1
A Mobile Combustion-Road Transportation	N ₂ O	98,253	78,549	0.0
A Stationary Combustion-Gaseous fuel	CO2	50,487	68,457	0.0
A Mineral Product-Limestone and Dolomite use	CO2	26,475	64,825	0.0
D Agricultural Soils	N ₂ O	63,259	59,687	0.0
A Mineral Product-Lime Production	CO2	31,526	56,298	0.0
C Waste Incineration	N ₂ O	36,852	35,249	0.0
A Mineral Product-Cement Production	CO2	26,589	32,569	0.0
A Enteric Fermentation	CH ₄	36,524	32,549	0.0
A Mobile Combustion-Civil Aviation	CO2	25,687	25,489	0.0
E Production of Halocarbons and SF6-Fugitive Emissions	PFCs	9,856	9,548	0.0
B Chemical Industry-Other	CO2	6,254	6,855	0.0
AMobile Combustion-Navigation	CO ₂	2,654	6,854	0.0
C Waste Incineration	CO ₂	6,584	6,852	0.0
B Manure Management	N ₂ O	8,655	6,485	0.0
AMobile Combustion-Navigation	N ₂ O	3,265	6,245	0.0
A Mineral Product-Other	CO ₂	6,852	5,822	0.0
B Chemical Industry-Ammonia Production	CO ₂	8,457	5,748	0.0
A Mobile Combustion-Railway	N ₂ O	3,254	5,682	0.0
1AMobile Combustion-Navigation	CH ₄	6.249	5.248	0.0

A IPCC Source Category	B Direct GHG	C Base Year Estimate [Mg CO ₂ eq.]	D Current Year Estimate [Mg CO ₂ eq.]	E Level Assessment	F Cumula Total Colum	of
1A Stationary Combustion-Solid fuel	CO2	235,648	265,745	0.22	1	0.2
IA Mobile Combustion-Road Transportation	CO ₂	265,489	255,847	0.21		0.4
1A Stationary Combustion-Liquid fuel	CO2	125,478	135,264	0.11	//	0.5
1A Mobile Combustion-Road Transportation	N20	98,253	78,549	0.06	//	0.6
1A Stationary Combustion-Gaseous fuel	CO ₂	50,487	68,457	0.06	11	0.6
2A Mineral Product-Limestone and Dolomite use	CO2	26,475	64,825	0.05	11	0.7
4D Agricultural Soils	N ₂ O	63,259	59,687	0.05	11	0.7
2A Mineral Product-Lime Production	CO ₂	31,526	56,298	0.05	11	0.1
5C Waste Incineration	N20	36,852	35,249	0.03	77	0.1
2A Mineral Product-Cement Production	CO ₂	26,589	32,569	0.03		0.1
4A Enteric Fermentation	CH4	36,524	32,549	0.03	/	0.1
A Mobile Combustion-Civil Aviation	CO ₂	25,687	25,489	0.02	7	0.9
2E Production of Halocarbons and SF6-Fugitive Emissions	PFCs	9,856	9,548	g/01	/	0.9
2B Chemical Industry-Other	CO2	6,254	6,855	/0.01/		0.9
IAMobile Combustion-Navigation	CO,	2,654	6,854	/ 0.0/		0.
6C Waste Incineration	CO ₂	6,584	6,852	/ 0.01		0.9
4B Manure Management	N20	8,655	6,485	/ 0/01		0.
IAMobile Combustion-Navigation	N ₂ O	3,265	6,245	/ 0.01		0.
2A Mineral Product-Other	CO,	6.852	5.822	/ /0.00		0.9
2B Chemical Industry-Ammonia Production	CO ₂	8,457	5,748	/ /0.00		0.9
IA Mobile Combustion-Railway	N ₂ O	3,254	5,682	/ 0.00		0.
IAMobile Combustion-Navigation	CH4	6.249	5.248	/ / 0.00		0.

A IPCC Source Category	B Direct GHG	C Base Year Estimate [Mg CO ₂ eq.]	D Current Year Estimate [Mg CO ₂ eq.]	E Level Assessment	F Cumulative Total of Column E
A Stationary Combustion-Solid fuel	CO ₂	235,648	265,745	0.22	0.2.
A Mobile Combustion-Road Transportation	CO2	265,489	255,847	0.21	0.4
A Stationary Combustion-Liquid fuel	CO2	125,478	135,264	0.11	0.5
A Mobile Combustion-Road Transportation	N2O	98,253	78,549	0.06	0.6
A Stationary Combustion-Gaseous fuel	CO2	50,487	68,457	0.06	0.6
A Mineral Product-Limestone and Dolomite use	CO2	26,475	64,825	0.05	0.7
D Agricultural Soils	N2O	63,259	59,687	0.05	0.7
A Mineral Product-Lime Production	CO2	31,526	56,298	0.05	0.8
C Waste Incineration	N20	36,852	35,249	0.03	0.8
A Mineral Product-Cement Production	CO2	26,589	32,569	0.03	0.8
A Enteric Fermentation	CH4	36,524	32,549	0.03	0.8
A Mobile Combustion-Civil Aviation	CO2	25,687	25,489	0.02	0.9
E Production of Halocarbons and SF6-Fugitive Emissions	PFCs	9,856	9,548	0.01	0.9
B Chemical Industry-Other	CO2	6,254	6,855	0.01	0.9
AMobile Combustion-Navigation	CO2	2,654	6,854	0.01	0.9
C Waste Incineration	CO ₂	6,584	6,852	0.01	0.9
B Manure Management	N ₂ O	8,655	6,485	0.01	0.9
AMobile Combustion-Navigation	N ₂ O	3,265	6,245	0.01	0.9
A Mineral Product-Other	CO2	6,852	5,822	0.00	0.9
B Chemical Industry-Ammonia Production	CO ₂	8,457	5,748	0.00	0.9
A Mobile Combustion-Railway	N ₂ O	3,254	5,682	0.00	0.9
A Mobile Combustion-Navigation	CH.	6.249	5.248	0.00	0.9



A PCC Source Category	B Direct GHG	C Base Year Estimate [Mg CO ₂ eq.]	D Current Year Estimate [Mg CO ₂ eq.]	E Level Assessment	F Trend Assessment	G (%) Contribution to Trend
A Stationary Combustion-Liquid fuel	CO2	125,478	135,264	0.11	0.00	0.4%
A Stationary Combustion-Solid fael	CO2	235,648	265,745	0.22	0.01	4.8%
A Stationary Combustion-Gaseous fuel	CO2	50,487	68,457	0.06	0.01	6.5%
A Stationary Combustion	CH4	3,154	1,524	0.00	0.00	// 0.9%
A Stationary Combustion	N ₂ O	2,156	1,502	0.00	0.00	// 0.4%
A Mobile Combustion-Civil Aviation	CO2	25,687	25,489	0.02	0.00	// LIS
A Mobile Combustion-Read Transportation	CO2	265,489	255,847	0.21	0.02	// 15.2%
A Mobile Combustion-Railway	CO2	500	485	0.00	0.00	// 0.0%
AMobile Combustion-Navigation	CO ₂	2,654	6,854	0.01	0.00	1.9%
A Mebile Combustion-Civil aviation	CH4	965	4,125	0.00	0.00	1.5%
A Mobile Combustion-Road Transportation	CH4	674	641	0.00	600	0.0%
A Mebile Combustion-Railway	CH4	1,689	4,597	0.00	0.00	1.3%
AMobile Combustion-Navigation	CH4	6,249	5,248	0.00	/ 0.00	0.7%
A Mobile Combustion-Civil Aviation	N ₂ O	2,569	1,255	0.00	0.04	0.7%
A Mobile Combustion-Road Transportation	N ₂ O	98,253	78,549	0.06	/ 0/2	13.3%
A Mobile Combustion-Railway	N ₂ O	3,254	5,682	0.00	/ 400	1.0%
AMobile Combustion-Navigation	N ₂ O	3,265	6,245	0.01	0.00	1.3%
B Fugitive Emission-Coal Mining and Handling (underground)	CH	2	6	0.00	/ / 0.00	0.0%
B Fugitive Emission-Coal Mining and Handling (surface)	CH4	25	65	0.00	0.00	0.0%
B Fugitive Emission-Oil	CO2	125	125	0.00	0.00	0.0%
				=F3/\$F	\$65	

A PCC Source Category	B Direct GHG	C Base Year Estimate [Mg CO ₂ eq.]	D Current Year Estimate [Mg CO ₂ eq.]	E Level Assessment	F Trend Assessment	G (%) Contribution (Trend
2A Mineral Product-Limestone and Dolomite use	CO2	26,475	64,825	0.05	0.03	17.1
1A Mobile Combustion-Read Transportation	CO2	265,489	255,847	0.21	0.02	15.2
1A Mobile Combustion-Road Transportation	N20	98,253	78,549	0.06	0.02	13.3
2A Mineral Product-Lime Production	CO2	31,526	56,298	0.05	0.02	10.:
IA Stationary Combustion-Gaseous fuel	CO ₂	50,487	68,457	0.06	0.01	6.
A Stationary Combustion-Solid fuel	CO ₂	235,648	265,745	0.22	0.01	43
D Agricultural Soils	N20	63,259	59,687	0.05	0.01	4
A Enteric Fermentation	CH4	36,524	32,549	0.03	0.01	3.
C Waste Incineration	N20	36,852	35,249	0.03	0.00	2.2
AMobile Combustion-Navigation	CO2	2,654	6,854	0.01	0.00	12
2A Mineral Product-Cement Production	CO2	26,589	32,569	0.03	0.00	13
B Manure Management	CH	6,457	3,566	0.00	0.00	1.0
2B Chemical Industry-Ammonia Production	CO2	8,457	5,748	0.00	0.00	1.
A Mobile Combustion-Civil aviation	CH	965	4,125	0.00	0.00	1.3
B Manure Management	N20	8,655	6,485	0.01	0.00	1
A Mobile Combustion-Railway	CH4	1,689	4,597	0.00	0.00	1.
AMobile Combustion-Navigation	N20	3,265	6,245	0.01	0.00	1.
A Mobile Combustion-Civil Aviation	CO2	25,687	25,489	0.02	0.00	1.
A Mobile Combustion-Railway	N20	3,254	5,682	0.00	0.00	1.
B Chemical Industry-Nitric Acid Production	N20	215	2,155	0.00	0.00	0.
IA Stationary Combustion	CH	3,154	1,524	0.00	0.00	0.9
B Chemical Industry-Adipic Acid Production	N20	3,156	5,247	0.00	0.00	0.
B Wastewater Handling	CH	4,621	3,264	0.00	0.00	0.1
A Mineral Product-Other	CO ₂	6,852	5,822	0.00	0.00	0.
A Mobile Combustion-Civil Aviation	N2O	2,569	1,255	0.00	0.00	0.1
AMobile Combustion-Navigation	CH4	6,249	5,248	0.00	0.00	0.1

A PCC Source Category	B Direct GHG	C Base Year Estimate [Mg CO ₂ eq.]	D Current Year Estimate [Mg CO ₂ eq.]	E Level Assessment	F Trend Assessment	G (%) Contribution to Trend	H Cumulative total of Column G
A Mineral Product-Limestone and Dolomite use	CO,	26,475	64,825	0.05	0.03	17.1%	17.1
A Mobile Combustion-Road Transportation	co,	265,489	255,847	0.21	0.02	15.2%	32.3
A Mobile Combustion-Road Transportation	N ₂ O	98,253	78,549	0.06	0.02	13.3%	45.5
A Mineral Product-Lime Production	CO2	31,526	56,298	0.05	0.02	10.5%	56.0
A Stationary Combustion-Gaseous fael	CO2	50,487	68,457	0.06	0.01	6.5%	62.5
A Stationary Combustion-Solid fuel	CO2	235,648	265,745	0.22	0.01	4.8%	67.3
D Agricultural Soils	N,0	63,259	59,687	0.05	0.01	4.2%	71.5
A Enteric Fermentation	CH	36,524	32,549	0.03	0.01	3.3%	74.9
Waste Incineration	N ₂ O	36,852	35,249	0.03	0.00	2.2%	77.1
AMobile Combustion-Navigation	CO2	2,654	6,854	0.01	0.00	1.9%	79.0
A Mineral Product-Cement Production	CO ₂	26,589	32,569	0.03	0.00	1.8%	\$0.7
B Manure Management	CH	6,457	3,566	0.00	0.00	1.6%	82.4
3 Chemical Industry-Ammonia Production	CO2	8,457	5,748	0.00	0.00	1.6%	84.0
A Mobile Combustion-Civil aviation	CH4	965	4,125	0.00	0.00	1.5%	85.4
B Manure Management	N,0	8,655	6,485	0.01	0.00	1.4%	86.8
A Mobile Combustion-Railway	CH,	1,689	4,597	0.00	0.00	1.3%	88.1
AMobile Combustion-Navigation	N ₂ O	3,265	6,245	0.01	0.00	1.3%	89.4
A Mobile Combustion-Civil Aviation	CO2	25,687	25,489	0.02	0.00	1.1%	90.5
A Mobile Combustion-Railway	N,0	3,254	5,682	0.00	0.00	1.0%	91.5
B Chemical Industry-Nitric Acid Production	N,0	215	2,155	0.00	0.00	0.9%	92.5
A Stationary Combustion	CH,	3,154	1,524	0.00	0.00	0.9%	93.4
B Chemical Industry-Adipic Acid Production	N20	3,156	5,247	0.00	0.00	0.9%	94.2
B Wastewater Handling	CH4	4,621	3,264	0.00	0.00	0.8%	95.0
A Mineral Product-Other	CO ₂	6,852	5,822	0.00	0.00	0.8%	95.8
A Mobile Combustion-Civil Aviation	N,0	2,569	1,255	0.00	0.00	0.7%	96.5
AMobile Combustion-Navigation	CH	6,249	5,248	0.00	0.00	0.7%	97.3

PCC Source Category	B Direct GHG	Base Year Estimate [Mg CO2 eq.]	D Current Year Estimate [Mg CO ₂ eq.]	E Level Assessment	F Trend Assessment	(%) Contribution to Trend	H Cumulative total of Column G
A Mineral Product-Limestone and Dolomite use	CO2	26.475	64.825	0.05	0.03	17.1%	17.15
A Mobile Combustion-Road Transportation	CO,	265.489	255.847	0.21	0.02	15.2%	32.35
A Mobile Combustion-Road Transportation	N,O	98,253	78,549	0.06	0.02	13.3%	45.5%
A Mineral Product-Lime Production	co,	31,526	56,298	0.05	0.02	10.5%	56.09
A Stationary Combustion-Gaseous fuel	CO,	50,487	68,457	0.06	0.01	6.5%	62.59
A Stationary Combustion-Solid fael	CO2	235,648	265,745	0.22	0.01	4.8%	67.35
ID Agricultural Soils	N _j O	63,259	59,687	0.05	0.01	4,2%	71.59
IA Enteric Fermentation	CH ₄	36,524	32,549	0.03	0.01	3.3%	74.99
C Waste Incineration	N20	36,852	35,249	0.03	0.00	2,2%	27.19
AMobile Combustion-Navigation	CO2	2,654	6,854	0.01	0.00	1.9%	79.05
A Mineral Product-Cement Production	CO2	26,589	32,569	0.03	0.00	1.8%	\$0.75
4B Manure Management	CH	6,457	3,566	0.00	0.00	1.6%	82.43
B Chemical Industry-Ammonia Production	CO2	8,457	5,748	0.00	0.00	1.6%	84.05
A Mobile Combustion-Civil aviation	CH	965	4,125	0.00	0.00	1.5%	85.49
4B Manure Management	N ₂ O	8,655	6,485	0.01	0.00	1.4%	86.85
A Mobile Combustion-Railway	CH ₄	1,689	4,597	0.00	0.00	1.3%	88.15
AMobile Combustion-Navigation	N ₂ O	3,265	6,245	0.01	0.00	1.3%	89.45
A Mobile Combustion-Civil Aviation	CO2	25,687	25,489	0.02	0.00	1.1%	90.59
A Mobile Combustion-Railway	N ₂ O	3,254	5,682	0.00	0.00	1.0%	91.59
B Chemical Industry-Nitric Acid Production	N ₂ O	215	2,155	0.00	0.00	0.9%	92.59
A Stationary Combustion	CH ₄	3,154	1,524	0.00	0.00	0.9%	93.45
B Chemical Industry-Adipic Acid Production	N ₂ O	3,156	5,247	0.00	0.00	0.9%	94.25
B Wastewater Handling	CHa	4,621	3,264	0.00	0.00	0.8%	95.05
A Mineral Product-Other	CO2	6,852	5,822	0.00	0.00	0.8%	95.85
A Mobile Combustion-Civil Aviation	N ₂ O	2,569	1,255	0.00	0.00	0.7%	96.59
AMobile Combustion-Navigation	CH	6,249	5,248	0.00	0.00	0.7%	97.35

WGIA-6 Wrap-up Session Summary

18 July 2008

Overall Recommendations

- · Continued and enhanced information exchange, More targeted use of WGIA online network list serve and newsletter to share information (i.e. soil carbon inventory)
 - Meetings should include an update or review of country contributions to "Asian region" EF database, literature, etc.
 - Discuss other sectors (industrial processes, energy) - Sharing on availability and use of remote sensing
 - data?

Note: Dependent upon active participation and contributions from WGIA countries

Group Recommendations

- LULUCF working group recommendations
 - Consider organizing training session can be organized on Century model to enable participating countries to simulate the five carbon pools essential for the inventory estimates This will help in identifying the input data needs that each country may need

 - Continued exchange challenges and opportunities countries are various stages in inventory preparation and have also varying levels of data and capacity (good exchange opportunity)
- Waste working group recommendations Next WGIA should focus on methane emissions from wastewater treatment
 - Information sharing through WGIA online network and SWGA
 - Braintacon strainty unougn weida online network and SWGA Establishment of data collection format (some general form that inventory teams can use to communicate to statistical agencies about data needs) Identification of country specific waste composition (best practices for addressing data constraints) Provide customized approaches or guidance given four levels of data collection systems namely: no data, not enough data, poor data quality and good quality data

Group Recommendations cont.

- · Agriculture working group recommendations Short-term (next meeting)
 - · Country presentations on specific EF developments
 - Exchange and review of Ag inventory information of each country by all the WGIA participants

 - Long-term
 - · Include soil C inventory as a category for discussion (use of Century model?)
 - Sharing of strategies for communicating "multipurpose" use of inventory data to policymakers (estimates emissions, but also indicator of sustainable agriculture production)
 - · Enhanced international collaboration (1 meeting is not necessarily enough?)

Group recommendations cont.

- General GHG Inventory working group recommendations: WGIA members and SEA project will develop a template on communicating with policy makers and how to share information-results to be presented at future WGIA meetings and (sooner if possible)
- Compile list of Regional Experts/Institutions as resource
 WGIA could serve as forum to evaluate/compare inventories (in whole or part for QA not formal process
- WGIA encourages case studies by some countries to develop time series and Japan will consider supporting these case studies [how]
- Try to hold invertory compiler training programme perhaps in association with a UNFCCC training course with next WGIA meeting (Annex I review are good training for reviewers, but require resources) WGIA participant could volunteer to develop an Uncertainty Analysis as a Case Study: • Make spreadsheet available • Develop uncertainty analysis based on key categories and use simple approach • Consider outcome at next WGIA meeting

Some Questions/Comments

- Many recommendations, priorities?
 - Consider key sources
 - Clarify technical assistance needs and how best WGIA can help (or others)
 - Training requires participation of appropriate experts (Ag, LULUCF) to be effective

Annex

· Detailed group summaries

Working Group 1: LULUCF

- · Working Group 1 "information exchange": Experiences of other countries also sought regarding the preparation of LULUCF Inventory This is expected to bring forth a wider range of issues that are posing as constraints towards the development of their respective inventories
 - Training on methodology itself (definitions)
- Working Group 1 recommendations:
 - A training session can be organized on Century model to enable participating countries to simulate the five carbon pools essential for the inventory estimates This will help in identifying the input data needs that each country may need
 - Challenges and opportunities countries are various stages in inventory preparation and have also varying levels of data and capacity (good exchange opportunity)

Working Group II: Waste

- Working group 2 "information exchange":
- Discussed strategies for data collection
 - Recognized need for improved communication is needed between data users and data suppliers (statistical agencies)
- Working group 2 recommendations:
 - Next WGIA should focus on methane emissions from wastewater treatment
 - Information sharing through WGIA online network and SWGA Establishment of data collection format (some general form that inventory teams can use to communicate to statistical agencies
 - about data needs)
 - about data needs) Identification of country specific waste composition (best practices for addressing data constraints) Provide customized approaches or guidance given four levels of data collection systems namely: no data, not enough data, poor data quality and good quality data

Working Group 3: Agriculture

- Working group 3 "information exchange":
 - Sharing of inventory preparation for specific source categories
 Sharing of data improvement strategies
 - Improve collaboration between researchers and compilers
- Working group 3 recommendations:
 - Short-term:
 Country presentations on specific EF developments
 Exchange and review of Ag inventory information of each country by all the
 WGIA participants
 - Long-term: Include soil C inventory as a category for discussion (use of Century model?)

 - Model /)
 Sharing of strategies on communicating "multipurpose" use of data (GHG inventories, but also indicator of sustainable agriculture production)
 Enhanced international collaboration (1 meeting is not necessarily enough?) · More targeted use of WGIA list serve and newsletter

Working Group 4: GHG Inventory

- Working group 4 "information exchange": Share strategies for communicating and linking GHG inventories to other priority activities to ensure continuity of inventories
- activities to ensure continuity of inventories Working group 4 recommendations: WGIA members and SEA project will develop a template on communicating with policy makers and how to share information-results to be presented at future WGIA meetings and (sooner if possible) Compile list of Regional Experts/Institutions as resource WGIA could serve as forum to evaluate/compare inventories (in whole or part for QA not formal process WGIA encurages case studies thow) Tro, to hold inventory compiler training noronzeme nertans in association with a

 - consider supporting timese case studies [how] Try to hold inventory compiler training programme perhaps in association with a UNFCCC training course with next WGIA meeting (Annex I review are good training for reviewers, but require resources.) WGIA participant could volunteer to develop an Uncertainty application Case Study: Make spreadsheet available

 - Develop uncertainty analysis based on key categories and use simple approach
 Consider outcome at next WGIA meeting

Annex 1

Agenda

	Day 1, Wedr	nesday 16 th July
10:00~10:30		Participant Registration
10:30~11:40	Opening Session	
	Chair: Takahiko Hiraishi	
10:30~10:35	Hideki Minamikawa	Welcome Address (MoEJ)
10:35~10:40	Ryutaro Ohtsuka	Welcome Speech (NIES)
10:40~11:00	All	Introduction of Participants
11:00~11:10	Yukihiro Nojiri	Overview of WGIA6
11:10~11:25	Jamsranjav Baasansuren	Progress Report on WGIA Activities
11:25~11:40	All	Q&A

11:40~11:50

Photo

11:50~15:30	Session I: Promotion of Intern	national Cooperation
	Chair: Yukihiro Nojiri Rappo	orteur: Jose Ramon T Villarin
11:50~12:00	Kotaro Kawamata	Importance of Measurement for Global GHG
		Reduction
12:00~12:20	Sei Kato	Japan's Policies and Efforts on GHG Inventory,
		Measurement and Reporting
12:20~12:35	Dominique Revet	Latest Update on non-Annex I National
		Communications
12:35~13:45		Lunch Break
13:45~13:55	Kiyoto Tanabe	Cooperation with Europe
13:55~14:15	Mausami Desai	U.S. Programs and Efforts on GHG Inventories,
		Measurement and Reporting
14:	Leandro Buendia	Regional Capacity Building Project for
15~14:35		Sustainable National GHG Inventory
		Management Systems in Southeast Asia (SEA
		Project)
14:35~14:50	Todd Ngara	Some African Experiences in GHG Inventory
		Preparation

14:50~15:20 All Q&A and Discussion 15:20~15:40 Tea Break 15:40~18:00 Session II: Uncertainty Assessment Chair: Leandro Buendia Rapporteur: Amnat Chidthaisong 15:40~15:50 Kiyoto Tanabe Guidance to Session II Simon Eggleston Uncertainty Analysis in Emission Inventories 15:50~16:10 16:10~16:30 Kohei Sakai Uncertainty Assessment of Japan's GHG Inventory 16:30~16:50 Sumana Bhattacharya Uncertainty Assessment: India's Experience 16:50~17:10 Cheon-Hee Bang Uncertainty Evaluation of Waste Sector : Korea's Experience 17:10~17:30 Nguyen Chi Quang Uncertainty Assessment in GHG Inventories in Vietnam Q&A and Discussion 17:30~18:00 All

18:30~20:30

Dinner (at the NIES canteen)

	Day 2, Thursday 17 th July				
9:30~11:40	Session III: Time Series Esti	mates and Projection			
	Chair: Dominique Revet R	apporteur: Todd Ngara			
9:30~ 9:40	Kiyoto Tanabe	Guidance to Session III			
9:40~ 10:00	Sei Kato	Global Warming-related Policies of the			
		Japanese Government: Kyoto Protocol Target			
		Achievement Plan			
10:00~10:20	Sirintornthep Towprayoon	Time Series Estimation and Projection of GHG			
		Emissions			
10:20~10:40	Dadang Hilman	Indonesia's Experiences in Developing of Time			
		Series Estimates and Projections (Including			
		Evaluation of Impacts of Policies and			
		Measures)			
10:40~11:00		Tea Break			
11:00~11:40	All	Q&A and Discussion			
11:40~12:50		Lunch Break			

12:50~16:45	Session IV: Working Group D	Discussion
12:50~13:05	Kiyoto Tanabe	Guidance to Session IV
13:05~16:45	WG: LULUCF Sector	
	Chair: Sumana Bhattacharya	Rapporteur: Batimaa Punsalmaa
	Yoshiki Yamagata	Remote Sensing Based Monitoring System for
		LULUCF
	Sumana Bhattacharya	Approach for Preparing GHG Inventory from
		the LULUCF Sector in India
	Damasa B.	Improving Secondary Forest Above-ground
	Magcale-Macandog	Biomass Estimates Using GIS-based Model
	Mitsuo Matsumoto	Japan's Forest Carbon Accounting System for
		Kyoto Reporting
	WG	Q&A and Discussion
13:05~16:45	WG: Waste Sector	
15.05~10.45		apporteur: Sirintornthep Towprayoon
	Tomonori Ishigaki	Property and Reliability of Waste Data
	Gao Qingxian	Use of Surrogate Data in Waste Sector
	Guo Qingxiun	Estimation (China's case)
	Hiroyuki Ueda	Development of Waste Sector GHG Inventory
		in Japan
	Normadiah Haji Husien	Malaysia: Report for Greenhouse Gas
		Inventories for Second National
		Communication (NC2), (Waste Sector)
	WG	Q&A and Discussion
13:05~16:45	WG: Agriculture Sector	
		orteur: Shuhaimen Ismail
	Kazuyuki Yagi	Introductory Presentation
	Osamu Enishi	Measurement Method of GHG Emission from
	TT' 1 41'	Ruminants and Manure Management
	Hiroko Akiyama	CH_4 and N_2O from Rice Paddies in 2006 IPCC
		GLs and Estimate of Japanese Country Specific
	Shuhaiman Ismail	N ₂ O Emission Factors
	Shuhaimen Ismail	NC2 - GHG Inventory
	Amnat Chidthaisong	Thailand Greenhouse Gas Inventory in

		Agricultural Sector
	Nguyen Van Anh	Vietnam's GHG Inventories in Agriculture
	Leandro Buendia	Sector
		GHG Inventory Issues in SEA Countries:
		Agriculture Sector
	Toshiaki Ohkura	A Perspective of Agriculture Sector
		Involvement in Asian GHG Inventory beyond
		2013
	WG	Q&A and Discussion
13:05~16:45	WG: GHG Inventory	
	Chair: Thy Sum Rapporteur:	Simon Eggleston
	Jose Ramon T Villarin	Raising Awareness of GHG Inventories and CC
		in the Philippines
	Kyonghwa Jeong	Korea's Experience in Awareness Raising
		About GHG Inventory and Climate Change
	Takeshi Enoki	Other GHG Inventory Related Issues

WG

14:45~15:05

Shu Yee Wong

Tea Break

Awareness Raising on GHG Inventory and

Climate Change: Singapore

Q&A and Discussion

17:00~18:00	Hands-on Training Session on	Key Category Analysis
17:00~17:15	Jamsranjav Baasansuren	Introduction to Key Source Analysis
17:15~18:00	All	Training

	Day 3, Friday 18 th July				
9:30~12:40	Wrap-up Session				
	Chair: Takahiko Hiraishi R	Rapporteur: Mausami Desai			
9:30~10:30	Speakers from the Working	Reports of Group Discussions			
	Groups				
10:30~11:00	All	Discussion			
11:00~11:15		Tea Break			
11:15~12:00	Rapporteurs	Overall Summary of Session I, II & III			
12:00~12:30	All	Discussion on Future Activities			

	Mausami Desai	Wrap-up
12:30~12:40	Yoshifumi Yasuoka	Closing Remarks (NIES)

Annex II: List of Participants

CAMBODIA

Mr. Chan Thoeun HENG Ministry of Environment

Mr. Thy SUM Ministry of Environment

CHINA Dr. Qingxian GAO Chinese Research Academy of Environmental Sciences

INDIA

Dr. Sumana BHATTACHARYA Ministry of Environment and Forests

INDONESIA Dr. Retno Gumilang DEWI Bandung Institute of Technology (Institut Teknologi Bandung)

Mr. Dadang HILMAN State Ministry of Environment

JAPAN

Dr. Hiroko AKIYAMA National Institute for Agro-Environmental Sciences

Dr. Osamu ENISHI National Institute of Livestock and Grassland Science

Mr. Takeshi ENOKI Mitsubishi UFJ Research and Consulting Co., Ltd. Ms. Mayuko HATTORI Ministry of the Environment

Dr. Yuriko HAYABUCHI National Institute for Environmental Studies

Mr. Ken IMAI Suuri-Keikaku Co., Ltd.

Dr. Tomonori ISHIGAKI Ryukoku University

Dr. Baasansuren JAMSRANJAV National Institute for Environmental Studies

Mr. Sei KATO Ministry of the Environment

Mr. Kotaro KAWAMATA Ministry of the Environment

Mr. Kazumasa KAWASHIMA Ministry of the Environment

Mr. Masanori KOMA Japan International Cooperation Agency

Dr. Mitsuo MATSUMOTO Forestry and Forest Products Research Institute

Mr. Hideki MINAMIKAWA Ministry of the Environment

Mr. Takashi MORIMOTO Mitsubishi UFJ Research and Consulting Co., Ltd. Dr. Shuzo NISHIOKA National Institute for Environmental Studies

Dr. Yukihiro NOJIRI National Institute for Environmental Studies

Dr. Toshiaki OKURA National Institute for Agro-Environmental Sciences

Ms. Takako ONO National Institute for Environmental Studies

Mr. Kohei SAKAI National Institute for Environmental Studies

Ms. Tamaki SAKANO National Institute for Environmental Studies

Dr. Yasuhito SHIRATO National Institute for Agro-Environmental Sciences

Mr. Kiyoto TANABE National Institute for Environmental Studies

Mr. Hiroyuki UEDA Suuri-Keikaku Co., Ltd.

Mr. Nobuyuki UTSUMI Mitsubishi UFJ Research and Consulting Co., Ltd.

Ms. Masako WHITE National Institute for Environmental Studies

Dr. Kazuyuki YAGI National Institute for Agro-Environmental Sciences Dr. Yoshiki YAMAGATA National Institute for Environmental Studies

LAO P.D.R. Mr. Khampadith KHAMMOUNHEUANG Prime Minister's Office

Mr. Soutchay SISOUVONG Ministry of Industry and Commerce

MALAYSIA Dr. Normadiah HUSIEN Department of Environment

Mr. Shuhaimen ISMAIL Malaysian Agriculture Research and Development Institute

MONGOLIA Dr. Batimaa PUNSALMAA Ministry of Nature and Environment

Dr. Enkhmaa SARANGEREL Ministry of Nature and Environment Hydrology and Environment Monitoring

Ms. Bulgan TUMENDEMBEREL Ministry of Nature and Environment

PHILIPPINES Dr. Damasa B. MAGCALE-MACANDOG University of the Philippines Los Banos

Dr. Jose Ramon T. VILLARIN Xavier University

REPUBLIC OF KOREA Mr. Cheon-Hee BANG Environmental Management Corporation

CGER-I087-2009, CGER/NIES

Ms. Seung-hee DO Korea Energy Management Corporation

Dr. Kyonghwa JEONG Korea Energy Economics Institute

Mr. Jung Hwan KIM Ministry of Environment

Mr. Rae Hyun KIM Korea Forest Research Institute

Dr. Kyeong-hak LEE Korea Forest Research Institute

Mr. Min-Young LEE Environmental Management Corporation

Mr. Sung-Hwan PARK Ministry of Knowledge Economy

Mr. Joo-Hwa SONG Environmental Management Corporation

Mr. Dongheon YOO Korea Energy Economics Institute

SINGAPORE Ms. Shu Yee WONG National Environment Agency

THAILAND Dr. Amnat CHIDTHAISONG King Mongkut's University of Technology Thonburi

Dr. Sirintornthep TOWPRAYOON King Mongkut's University of Technology Thonburi **VIET NAM** Dr. Quang Nguyen CHI Vietnam National Coal-Mineral Industries Group

Ms. Van Anh NGUYEN Ministry of Natural Resources and Environment

IGES/ IPCC Mr. Takahiko HIRAISHI Institute for Global Environmental Strategies Intergovernmental Panel on Climate Change

SEA PROJECT

Mr. Leandro BUENDIA Regional Capacity Building Project for Sustainable, National Greenhouse Gas Inventory Management Systems in Southeast Asia

TSU-NGGIP-IPCC Dr. Simon EGGLESTON Technical Support Unit National Greenhouse Gas Inventories Programme, The Intergovernmental Panel on Climate Change

UNEP Mr. Todd NGARA United Nations Environment Programme

UNFCCC Mr. Tomoyuki AIZAWA United Nations Framework Convention on Climate Change Secretariat

Mr. Dominique REVET United Nations Framework Convention on Climate Change Secretriat US EPA Ms. Mausami DESAI United States Environmental Protection Agency

OTHER PARTICIPANTS (OBSERVERS):

BANGLADESH Dr. Mafizur RAHMAN Bangladesh University of Engineering and Technology

FRANCE Ms. Julie DONAT Embassy of France

U.S. A Dr. Harlan L. WATSON U.S. Department of State