Country-specific Emission Factors for Rice Cultivation in the Philippines

7th Workshop on GHG Inventories in Asia 7-10 July 2009, Seoul, Republic of Korea

Leandro Buendia

Team Leader, Agriculture Sector of the Philippine SNC GHG

Inventory

Outline

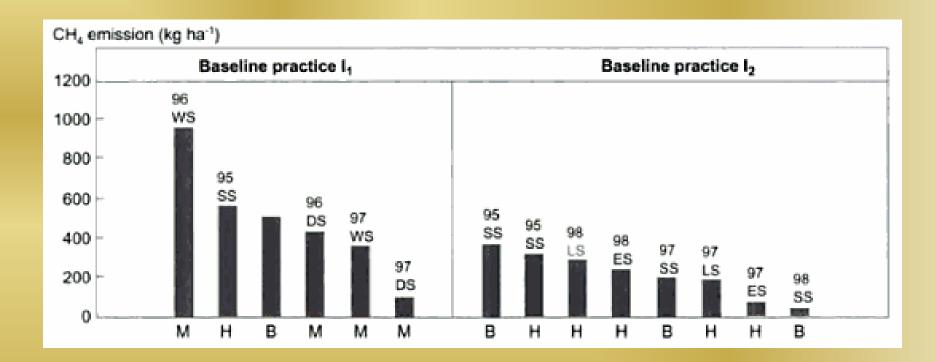
- Concerns with the EFs used in 1994 inventory
- The IRRI Project on methane measurement
- How country-specific EFs were developed
- Views about the newly developed EFs
- Conclusion and Recommendation

Concerns with 1994 EFs in Rice

- For the Philippine NC1, the EFs used were:
 - For irrigated: 2.3 kg/ha/day
 - For rainfed: 0.4 kg/ha/day
 - These EFs were based on IRRI Methane Project
 preliminary results in 1994
- The 1996 IPCC default value = 2 kg/ha/day
- However, the IRRI Methane Project continued the measurements until 1999; thus more data and information were generated

The IRRI International Research Program on Methane Emissions from rice fields in Asia

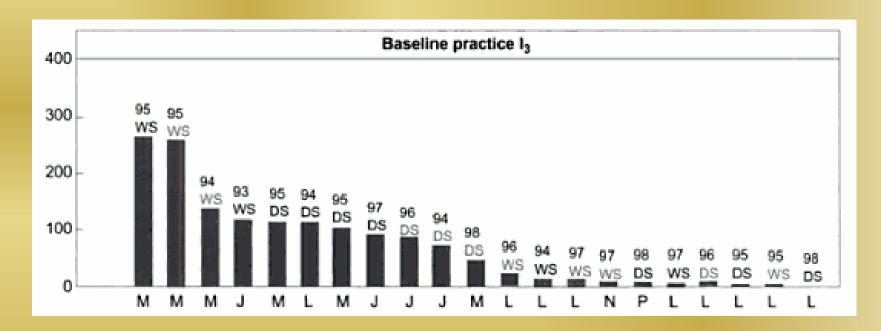
- Automated closed chambers measuring system: 24 hours/day for the whole growing season; 2-3 cropping seasons.
- Five countries (8 stations):
 - China (2)
 - India (2)
 - Indonesia (1)
 - Philippines (2)
 - Thailand (1)



All findings were published in a book "Methane Emissions from Major Rice Ecosystems in Asia", Development in Plant and Soil Sciences, Kluwer Academic Publishers

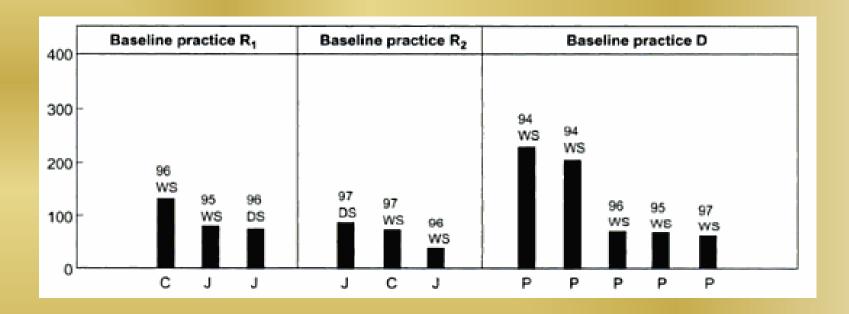
Characterization of the experimental sites

Table 1. Characterization	ot experimental site	es					Detailed
Station, country	Ecosystem	Geographic		Soil properties			
	•	coordinates	Texture	pН	Org C (%)	Total N (%)	(this issue)
Beijing, China	Irrigated	39° 93′ N 116° 47 <i>′</i> E	Silty clay loam	7.0	0.99	0.09	Wang et al.
Hangzhou, China	Irrigated	30° 23′ N 120° 20′ E	Silty clay	6.2	2.4	0.22	Lu et al.
New Delhi, India	Irrigated	20° 38′ N 70° 10′ E	Sandy clay loam	8.2	0.45	0.069	Jain et al.
Maligaya, Philippines	Irrigated	15° 67′ N 120° 88′ E	Silty clay	6.1	1.3	0.09	Corton et al.
Cuttack, India	Rainfed	20° 50′ N 86° 00′ E	Clay loam	7.0	0.54	0.048	Adhya et al.
Jakenan, Indonesia	Rainfed	6°68′ S 111°20′ E	Silty loam	4.7	0.48	0.05	Setyanto et al.
Los Baños, Philippines	Rainfed	14° 18′ N 121°25′ E	Silty clay	6.3	1.5	0.14	Wassmann et al. Abao et al.
Prachinburi, Thailand	Deepwater	13°92′ N 101°25′ E	Clay	3.9	1.2	0.17	Chareonsilp et a


Seasonal CH4 Emissions under different baseline practices

- I1 = continuous flooding with organic amendments
- I2 = midseason drainage with organic amendments

Note: X-axis labels are first letters of Hangzhou, Beijing, and Maligaya.


Seasonal CH4 Emissions under different baseline practices

13 = continuous flooding, without organic amendments

Note: X-axis labels are first letters of Maligaya, Jakenan, Los Banos, New Delhi and Prachinburi.

Seasonal CH4 Emissions under different baseline practices

R1 = continuous flooding with organic amendments

R2 = midseason drainage with organic amendments

Note: X-axis labels are first letters of Cuttack, Jakenan, and Prachinburi.

What the IRRI Findings suggest?

EQUATION 5.1 CH₄EMISSIONS FROM RICE CULTIVATION

$$CH_{4 \text{ Rice}} = \sum_{i,j,k} (EF_{i,j,k} \bullet t_{i,j,k} \bullet A_{i,j,k} \bullet 10^{-6})$$

Where:

CH_{4 Rice} = annual methane emissions from rice cultivation, Gg CH₄ yr⁻¹

 EF_{ijk} = a daily emission factor for i, j, and k conditions, kg CH₄ ha⁻¹ day⁻¹

 t_{iik} = cultivation period of rice for i, j, and k conditions, day

 A_{ijk} = annual harvested area of rice for i, j, and k conditions, ha yr⁻¹

i, j, and k = represent different ecosystems, water regimes, type and amount of organic amendments, and other conditions under which CH₄ emissions from rice may vary

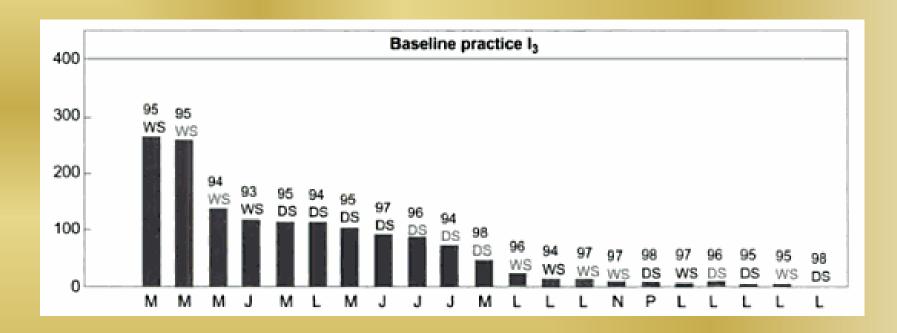
EQUATION 5.2 Adjusted daily emission factor

$$EF_i = EF_c \bullet SF_w \bullet SF_p \bullet SF_o \bullet SF_{s,r}$$

Where:

EF_i = adjusted daily emission factor for a particular harvested area

EF_c = baseline emission factor for continuously flooded fields without organic amendments

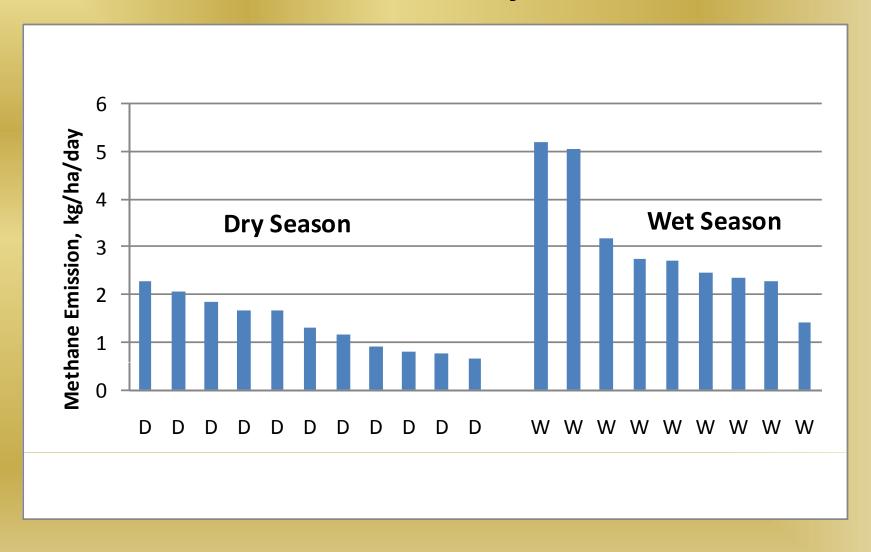

 SF_w = scaling factor to account for the differences in water regime during the cultivation period (from Table 5.12)

SF_p = scaling factor to account for the differences in water regime in the pre-season before the cultivation period (from Table 5.13)

SF_o = scaling factor should vary for both type and amount of organic amendment applied (from Equation 5.3 and Table 5.14)

SF_{s,r} = scaling factor for soil type, rice cultivar, etc., if available

13 = continuous flooding, without organic amendments



Note: X-axis labels are first letters of Maligaya, Jakenan, Los Banos, New Delhi and Prachinburi.

Table 1. Summary of baseline emissions (i.e. continuously flooded and without organic amendment)

Station	Year	Season	Cultiva	r Mean Emission (mg/m2/d)	Mean Emission (kg/ha/d)	Mean DS (kg/ha/d)	Mean WS (kg/ha/d)
Maligaya	1994	Dry	IR72	90.00	0.90	0.86	
			IR72	64.00	0.64		
			IR64	74.00	0.74		
			IR64	114.00	1.14		
	1994	Wet	IR72	269.00	2.69		2.43
			IR72	232.00	2.32		
			IR72	227.00	2.27		
			IR72	243.00	2.43		
	1995	Dry	IR72	184.00	1.84	1.72	
			IR72	166.00	1.66		
			IR72	205.00	2.05		
			IR72	131.00	1.31		
	1995	Wet	IR72	503.00	5.03		3.69
			IR72	317.00	3.17		
			IR72	516.00	5.16		
			IR72	139.00	1.39		
	1996	Dry	IR72	165.00	1.65	1.65	
		Wet	IR72	272.00	2.72		2.72
	1998	Dry	PSBRc28	79.00	0.79	0.79	
Los Banos	1994	Dry	IR72	227.00	2.27	2.27	
				Mean Emission	2.11	1.46	2.95

CH4 Emissions by season

EFs for rice cultivation in the Philippines

Variety	Water Management	Organic amendment	Cropping Season	Emission Factor, kg/ha/day
IR72	Continuous flooding	none	dry season	1.46 (0.64 - 2.27)
IR72	Continuous flooding	none	wet season	2.95 (1.39 -5.16)
0	ton at al. 2000; Massamana	1 -1 0000		

Source: Corton et al. 2000; Wassmann et al. 2000

			_	_	_
т.	DI	_		7	7
	~		•		
					_

DEFAULT CH₄ BASELINE EMISSION FACTOR ASSUMING NO FLOODING FOR LESS THAN 180 DAYS PRIOR TO RICE CULTIVATION, AND CONTINUOUSLY FLOODED DURING RICE CULTIVATION WITHOUT ORGANIC AMENDMENTS

	Emission factor	Error range
CH ₄ emission (kg CH ₄ ha ⁻¹ d ⁻¹)	1.30	0.80 - 2.20

Source: Yan et al., 2005

Adjusted country-specific EFs

Cropping Season	Rice Ecosystem	SFp	SFw	SFo	EFc kg/ha/day	EFi kg/ha/day
Dry season	Irrigated	1.0	0.57	1.27	1.46	1.05
	Rainfed	1.0	0.27	1.17		0.46
Wet season	Irrigated	1.0	0.57	1.76	2.95	2.97
	Rainfed	1.0	0.27	1.54		1.23

CH4 Emission from Rice Cultivation in the Philippines, 2000

		MODULE	AGRICULTURE						
		MODULE	METHANE EMISSIONS FROM FLOODED RICE FIELDS						
			4-2						
			1 OF 1						
COUNTRY Philippines									
			2000						
			A	В	С	D	Е		
Water Management Regime		Harvested Area	Season length, days	Baseline emission factor for continuously flooded field without organic amendment (EFc)	Adjusted daily emission factor (EFi)	CH ₄ Emissions			
			(1000 ha)		(kg/ha/day)	(kg/ha/day)	(Gg)		
							$E = (A \times B \times D)/1000$		
Irrigated							0.00		
	Continuously flooded	dry season	1265.742	114	1.46	1.05	151.51		
		wet season	1437.612	114	2.95	2.97	486.75		
Rainfed	dry season		471.881	113		0.46	24.53		
	wet season		862.85	113		1.23	119.93		
Deep Water							0.00		
	Water Depth > 100 cm						0.00		
Totals			4,038.085				782.71		

Conclusion

- We are confident in using the new countryspecific EFs for rice cultivation in the Philippines
- We believe that they have improved our estimates of CH4 emissions from rice field since we were also able to disaggregate by season
- We think that other countries could benefit from the IRRI findings in generating CSEF and in improving their estimate of methane emissions.

