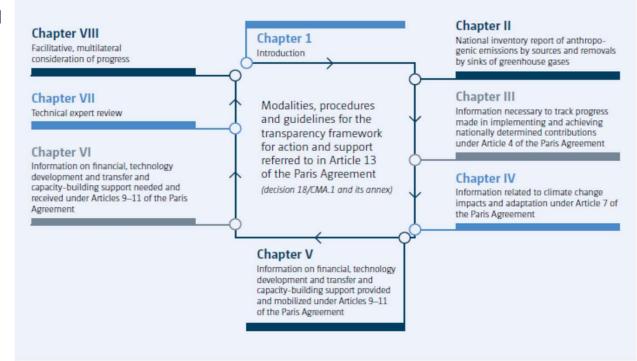
Overview on GHG inventory reporting under the Paris Agreement

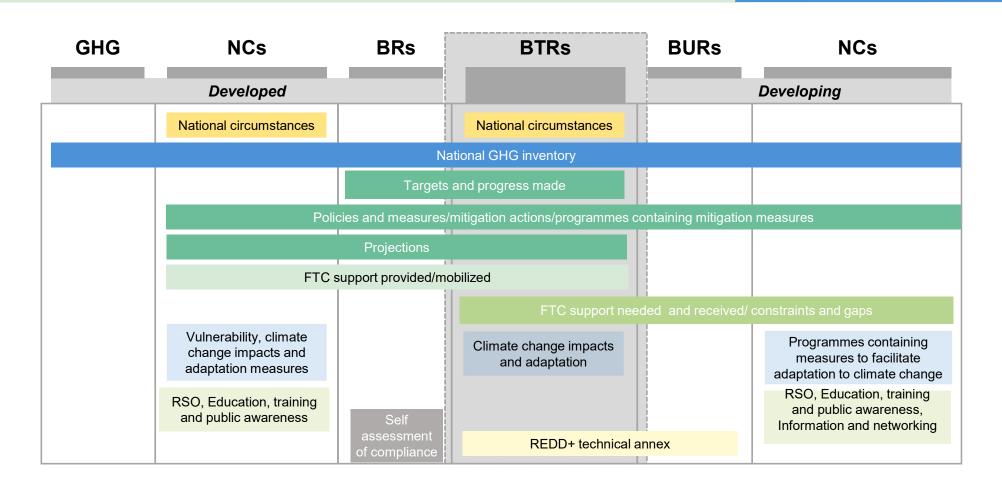
12 July 2022

GHG inventory requirements under the Enhanced Transparency Framework (ETF)

Tomoyuki Aizawa, System & Tool unit Transparency Division

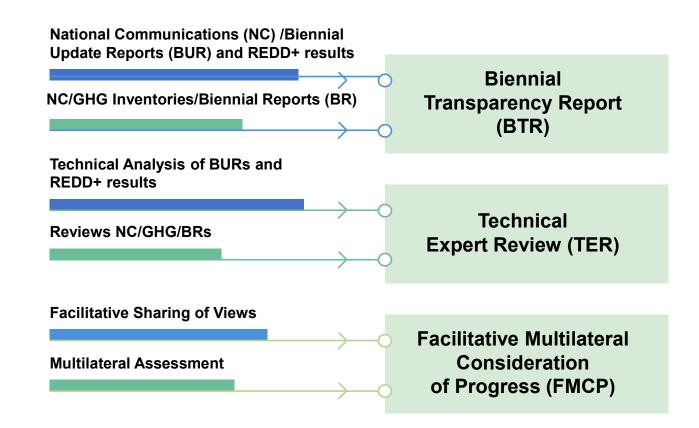

Transparency and the MPGs

The Paris Agreement established an Enhanced Transparency Framework (ETF) designed to build trust and confidence that all countries are contributing their share to the global effort


Decision 18/CMA.1 (Katowice) adopted the Modalities, Procedures and Guidelines (MPGs) pursuant to Art. 13 of the Paris Agreement

The ETF builds on the current measurement, reporting and verification (MRV) system under the Convention: GHG inventories and the International Assessment and Review (IAR) for developed countries, and International Consultation and Analysis (ICA) for developing countries

Reporting overview


Building on existing arrangements

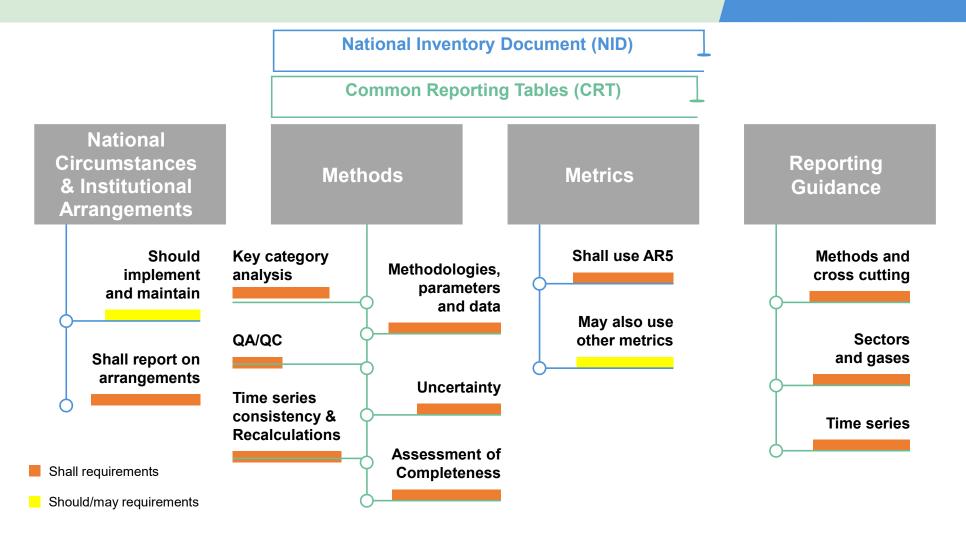
While many requirements under the Convention are superseded, those for NCs for all Parties, annual GHG inventory for developed Parties continues.

REDD+ results will be reported with BTRs.

FREL/FRL will continue to be reported separately; the technical assessment of reference levels will remain separate.

Changes in national GHG inventory reporting for developing countries

BUR


- · Use of 1996 IPCC Guidelines
- Cover inventory year T-4
- · Activity data should be updated
- Reporting at a summary level
- · Key category analysis should be done
- Limited reporting on institutional arrangements (e.g. archiving, inventory as a continuous process). No specific requirements on QA/QC
- Shall report CO₂, CH₄ and N₂O
 (using SAR values); encouraged to report
 other gases
- · Should quantitively estimate uncertainty

BTR

- Use of the 2006 IPCC Guidelines
- Cover year T-2 (T-3 with flexibility*)
- · Recalculations of previous data required
- Reporting tables and Outline of National Inventory Document finalized at CMA 3
- Key category analysis required (with flexibility*)
- Reporting on institutional arrangements required (e.g. planning, preparation and management). Shall develop a QA/QC plan (with flexibility*)
- Shall report basket of 7 gases (with flexibility*), using AR5 GWP values
- Shall quantitatively estimate uncertainty (with flexibility*)

National Inventory Report - overview

National GHG Inventory - principles

The 2006 Guidelines encourage continuous improvement and rigor through QA/QC and verification activities.

For a full definition of the IPCC principles, see 2006 IPCC Guidelines, vol. 1, chpt. 1, sec. 1.4.

Transparency

Documentation is sufficiently clear such that individuals or groups other than the inventory compilers can understand how the inventory was compiled be certain it meets IPCC good practice requirements.

Accuracy

The GHG inventory contains neither over- nor underestimates so far as can be Judged; all endeavors made to remove bias from the inventory estimates.

Consistency

Estimates for different inventory years, gases and categories are made in such a way that differences in the results between years and categories reflect real differences in emissions.

Completeness

Estimates are reported for all relevant categories and gases in the relevant geographic area.

Missing categories are clearly documented together with a justification for exclusion.

Comparability

The GHG inventory is reported in a way that allows it to be compared with inventories for other countries.

National GHG inventory - elements

Methods/Guidelines

- 2006 IPCC Guidelines are required, along with any subsequent version/refinement agreed upon by the CMA Parties encouraged to apply the 2013 Wetlands Supplement
- Countries always encouraged to apply higher-tier methods and factors
- Energy, Industrial
 Processes and Product
 Use, Agriculture, Waste,
 Land use, Land Use
 Change and Forestry
- Use global warming potential values from AR5

Gases

- Shall: CO₂, CH₄, N₂O, HFCs, PFCs, SF₆, NF3 (with flexibility)
- Should: pre-cursor gases (CO, NOx, NMVOCs and SO₂)
- May report indirect CO₂ from atmospheric oxidation of CH₄, CO and NMVOCs; if choose to, report total GHG emissions with and without indirect CO₂
- Should report indirect N₂O other than ag/LULUCF as a memo item (not included in national totals)
- May report other substances that have an impact on climate

Time series

- Shall: report consistent time series from 1990 (with flexibility)
- Shall: Latest reporting year no more than 2 years prior to the submission year (with flexibility)

National GHG inventory - elements

Key category analysis

 Shall identify those categories that contribute most to the level or trend of emissions; generally use higher tier methods for key categories (with flexibility)

Time series consistency & recalculations

- Should use the same methods over time, as well as approach to AD and EFs
- Should use IPCC splicing techniques to fill in gaps in time series
- Shall perform recalculations in accordance with IPCC Guidelines

Uncertainty Assessment

 Shall quantitatively assess uncertainty and qualitatively discuss uncertainty for all source and sink categories, for at least the starting year and latest year (with flexibility)

National GHG inventory - elements

Completeness Assessment

- Should indicate sources/sinks included in IPCC Guidelines, but not reported.
- Shall use notation keys where numerical data not reported, describing why the emissions for specific categories are not reported.
- May exclude "insignificant" categories from reporting, where insignificant defined as categories being 500 kt CO2 eq or 0.05% of national emissions, whichever is lower. Total sum of categories considered insignificant must remain below 0.1% of total national emissions (with flexibility)
- Once categories are reported, Parties shall continue reporting the category

QA/QC

- Shall elaborate an inventory QA/QC plan (with flexibility)
- Shall implement general QA/QC procedures (with flexibility)
- Should apply category-specific QC procedures for key categories and for categories in which significant methodological changes and/or data revisions have occurred.
- Should conduct a basic peer review of inventory
- Should compare sectoral estimates with the reference approach, and report results

Flexibility for developing countries

Flexibility Provisions
☐ The ETF provides built-in flexibility to those developing countries that need it owing to their national capaciti
☐ Capacity-building and support from developed country Parties will be crucial to facilitating improvement in reporting over time
☐ MPGs specify the flexibility that is available in the scope, frequency and level of detail of reporting, and in the scope of the review
☐ The application of a flexibility provided for in the provisions of these MPGs is self-determined
Least Developed Countries (LDCs) and Small Island Developing States (SIDS)
☐ Special circumstances of the least developed countries and small island developing states were recognized
☐ LDCs/SIDS may submit the information referred to in Article 13 (paras. 7, 8, 9 and 10) at their discretion
Support and capacity building
☐ Support shall be provided to developing countries for the implementation of Article 13
☐ Support shall also be provided continuously for building transparency-related capacity of developing countries

Flexibility provisions for national GHG inventory

Flexibility (annex to Dec. 18/CMA.1)	Flexibility provisions for those developing country Parties that need it in the light of their capacities
Key categories (para. 25)	Identify key categories using a threshold no lower than 85 per cent (instead of 95 per cent)
Uncertainty assessment (para. 29)	Provide qualitative discussion of uncertainty for key categories both latest inventory year/ trend, instead of quantitatively estimating and qualitatively discussing uncertainty for all categories for at least the starting year and the latest reporting year and the trend.
Completeness (para. 32)	Consider emissions insignificant if the likely level of emissions is below 0.1 per cent of total GHG emissions, excluding LULUCF, or 1,000 kt $\rm CO_2$ eq, whichever lower (as opposed to 0.05 per cent or 500 kt $\rm CO_2$ eq). Total emissions for all gases from categories considered insignificant shall remain below 0.2 % total GHG emissions, excluding LULUCF, as opposed to 0.1 per cent.
QA/QC (paras. 34 and 35)	Encouraged to elaborate an inventory QA/QC plan including information on the inventory agency responsible for implementing QA/QC (as opposed to a requirement to develop a QA/QC plan).
	Encouraged to implement and provide information on general inventory QC procedures in accordance with their QA/QC plan (as opposed to required to implement and provide information).
Gases (para. 48)	Report at least 3 gases (CO_2 , CH_4 and N_2O). Also any of the 4 gases (HFCs, PFCs, SF_6 and NF_3) included in NDC under Art. 4 or that are covered by an activity under Art. 6, or have been previously reported (as opposed to reporting all 7 gases)
Time series (paras. 57 and 58)	Report data covering the reference year/period for the NDC and, in addition, a consistent annual time series from at least 2020 onward (as opposed to reporting a continuous time series from 1990 onwards).
	The latest reporting year shall be no more than 3 years prior to submission of the inventory (as opposed to no more than 2 years for all other Parties)

Metrics

- Method, Section II, D. Metrix, §37
 Appendix 8.A: Lifetimes, Radiative Efficiencies and Metric Values
- 5/CMA.3, §25 Clarifies that the 100-year time-horizon global warming potential values referred to in decision 18/CMA.1, annex, paragraph 37, shall be those listed in table 8.A.1 of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, excluding the value for fossil methane;
- https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf#page=73

Appendix 8.A: Lifetimes, Radiative Efficiencies and Metric Values

Table 8.A.1 | Radiative efficiencies (REs), lifetimes/adjustment times, AGWP and GWP values for 20 and 100 years, and AGTP and GTP values for 20, 50 and 100 years. Climate—carbon feedbacks are included for CO₂ while no climate feedbacks are included for the other components (see discussion in Sections 8.7.1.4 and 8.7.2.1, Supplementary Material and notes below the table; Supplementary Material Table 8.SM.16 gives analogous values including climate—carbon feedbacks for non-CO₂ emissions). For a complete list of chemical names and CAS numbers, and for accurate replications of metric values, see Supplementary Material Section 8.SM.13 and references therein.

Acronym, Common Name or Chemi- cal Name	Chemical Formula	Lifetime (Years)	Radiative Efficiency (W m ⁻² ppb ⁻¹)	AGWP 20-year (W m ⁻² yr kg ⁻¹)	GWP 20-year	AGWP 100-year (W m ⁻² yr kg ⁻¹)	GWP 100-year	AGTP 20-year (K kg ⁻¹)	GTP 20-year	AGTP 50-year (K kg ⁻¹)	GTP 50-year	AGTP 100-year (K kg ⁻¹)	GTP 100-year
Carbon dioxide	CO ₂	see*	1.37e-5	2.49e-14	1	9.17e-14	1	6.84e-16	1	6.17e-16	1	5.47e-16	1
Methane	CH₄	12.41	3.63e-4	2.09e-12	84	2.61e-12	28	4.62e-14	67	8.69e-15	14	2.34e-15	4
Fossil methane‡													
Nitrous Oxide	N ₂ O	121†	3.00e-3	6.58e-12	264	2.43e-11	265	1.89e-13	277	1.74e-13	282	1.28e-13	234

Metrics (F-gases)

- https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5 Chapter08 FINAL.pdf#page=74
- https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf#page=75
- https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5 Chapter08 FINAL.pdf#page=76

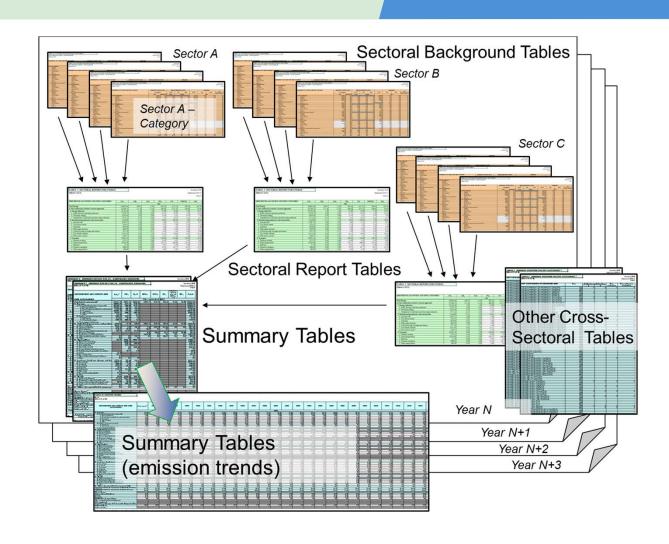
Acronym, Common Name or Chemical Name	Chemical Formula	Lifetime (Years)	Radiative Efficiency (W m ⁻² ppb ⁻¹)	AGWP 20-year (W m ⁻³ yr kg ⁻¹)	GWP 20-year	AGWP 100-year (W m ⁻² yr kg ⁻¹)	GWP 100-year	
Hydrofluorocarbons								
HFC-23	CHF ₃	222.0	0.18	2.70e-10	10,800	1.14e-09	12,400	1
HFC-32	CH ₂ F ₂	5.2	0.11	6.07e-11	2430	6.21e-11	677	
HFC-41	CH ₃ F	2.8	0.02	1.07e-11	427	1.07e-11	116	
HFC-125	CHF ₂ CF ₃	28.2	0.23	1.52e-10	6090	2.91e-10	3170	
HFC-134	CHF2CHF2	9.7	0.19	8.93e-11	3580	1.02e-10	1120	ı
HFC-134a	CH ₂ FCF ₃	13.4	0.16	9.26e-11	3710	1.19e-10	1300	
HFC-143	CH ₂ FCHF ₂	3.5	0.13	3.00e-11	1200	3.01e-11	328	1
HFC-143a	CH ₂ CF ₃	47.1	0.16	1.73e-10	6940	4.41e-10	4800	ı
HFC-152	CH ₂ FCH ₂ F	0.4	0.04	1.51e-12	60	1.51e-12	16	1
HFC-152a	CH ₃ CHF ₂	1.5	0.10	1.26e-11	506	1.26e-11	138	
HFC-161	CH ₂ CH ₂ F	66.0 days	0.02	3.33e-13	13	3.33e-13	4	
HFC-227ca	CF ₃ CF ₂ CHF ₂	28.2	0.27	1.27e-10	5080	2.42e-10	2640	
HFC-227ea	CF3CHFCF3	38.9	0.26	1.34e-10	5360	3.07e-10	3350	
HFC-236cb	CH ₂ FCF ₂ CF ₃	13.1	0.23	8.67e-11	3480	1.11e-10	1210	
HFC-236ea	CHF ₂ CHFCF ₃	11.0	0.30×	1.03e-10	4110	1.22e-10	1330	
HFC-236fa	CF ₃ CH ₂ CF ₃	242.0	0.24	1.73e-10	6940	7.39e-10	8060	
HFC-245ca	CH ₂ FCF ₂ CHF ₂	6.5	0.249	6.26e-11	2510	6.56e-11	716	
HFC-245cb	CF ₂ CF ₂ CH ₃	47.1	0.24	1.67e-10	6680	4.24e-10	4620	
HFC-245ea	CHF2CHFCHF3	3.2	0.16°	2.15e-11	863	2.16e-11	235	
HFC-245eb	CH ₂ FCHFCF ₃	3.1	0.20	2.66e-11	1070	2.66e-11	290	
HFC-245fa	CHF ₂ CH ₂ CF ₃	7.7	0.24	7.29e-11	2920	7.87e-11	858	
HFC-263fb	CH ₂ CH ₂ CF ₂	1.2	0.10=	6.93e-12	278	6.93e-12	76	
HFC-272ca	CH ₂ CF ₂ CH ₃	2.6	0.07	1.32e-11	530	1.32e-11	144	Н
HFC-329p	CHF ₂ CF ₂ CF ₂ CF ₃	28.4	0.31	1.13e-10	4510	2.16e-10	2360	
HFC-365mfc	CH ₃ CF ₂ CH ₂ CF ₃	8.7	0.22	6.64e-11	2660	7.38e-11	804	
HFC-43-10mee	CF3CHFCHFCF3CF3	16.1	0.429	1.08e-10	4310	1.51e-10	1650	
HFC-1132a	CH ₂ =CF ₂	4.0 days	0.0046	3.87e-15	<1	3.87e-15	<1	ı
HFC-1141	CH ₂ =CHF	2.1 days	0.002 ^d	1.54e-15	<1	1.54e-15	<1	ı
(Z)-HFC-122Sye	CF3CF=CHF(Z)	8.5 days	0.02	2.14e-14	<1	2.14e-14	<1	ı
(E)-HFC-1225ye	CF ₃ CF=CHF(E)	4.9 days	0.01	7.25e-15	<1	7.25e-15	<1	1
(Z)-HFC-1234ze	CF ₂ CH=CHF(Z)	10.0 days	0.02	2.61e-14	1	2.61e-14	<1	
HFC-1234yf	CF ₂ CF=CH ₂	10.5 days	0.02	3.22e-14	1	3.22e-14	<1	ı
(E)-HFC-1234ze	trans-CF ₃ CH=CHF	16.4 days	0.04	8.74e-14	4	8.74e-14	<1	
(Z)-HFC-1336	CF,CH=CHCF,(Z)	22.0 days	0.074	1.54e-13	6	1.54e-13	2	1

Acronym, Common Name or Chemical Name	Chemical Formula	Lifetime (Years)	Radia- tive Effi- ciency (W m ⁻² ppb ⁻¹)	AGWP 20-year (W m-2 yr kg-1)	GWP 20-year	AGWP 100-year (W m ⁻² yr kg ⁻¹)	GWI 100-ye
HFC-1243zf	CF ₃ CH=CH ₂	7.0 days	0.01	1.37e-14	1	1.37e-14	<1
HFC-1345zfc	C ₂ F ₅ CH=CH ₂	7.6 days	0.01	1.15e-14	<1	1.15e-14	<1
3,3,4,4,5,5,6,6,6-Nonafluorohex-1-ene	C ₈ F ₉ CH=CH ₂	7.6 days	0.03	1.25e-14	<1	1.25e-14	<1
3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooct-1-ene	C ₂ F ₁₃ CH=CH ₂	7.6 days	0.03	9.89e-15	<1	9.89e-15	<1
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Hep- tadecafluorodec-1-ene	C ₆ F ₁₇ CH=CH ₂	7.6 days	0.03	8.52e-15	<1	8.52e-15	<1
Chlorocarbons and Hydrochlorocarbons							
Methyl chloroform	CH ₃ CCI ₃	5.0	0.07	1.44e-11	578	1.47e-11	160
Carbon tetrachloride	CCIa	26.0	0.17	8.69e-11	3480	1.59e-10	173
Methyl chloride	CH ₂ CI	1.0	0.01=	1.12e-12	45	1.12e-12	12
Methylene chloride	CH ₂ Cl ₂	0.4	0.039	8.18e-13	33	8.18e-13	9
Chloroform	CHCl ₃	0.4	80.0	1.50e-12	60	1.50e-12	16
1,2-Dichloroethane	CH ₂ CICH ₂ CI	65.0 days	0.01	8.24e-14	3	8.24e-14	<1
Bromocarbons, Hydrobromocarbons and Halons							
Methyl bromide	CH ₃ Br	0.8	0.004	2.16e-13	9	2.16e-13	2
Methylene bromide	CH ₂ Br ₂	0.3	0.01	9.31e-14	4	9.31e-14	1
Halon-1201	CHBrF ₂	5.2	0.15	3.37e-11	1350	3.45e-11	376
Halon-1202	CBr ₂ F ₂	2.9	0.27	2.12e-11	848	2.12e-11	231
Halon-1211	CBrCIF ₂	16.0	0.29	1.15e-10	4590	1.60e-10	175
Halon-1301	CBrF ₁	65.0	0.30	1.95e-10	7800	5.77e-10	629
Halon-2301	CH ₂ BrCF ₃	3.4	0.14	1.59e-11	635	1.59e-11	173
Halon-2311 / Halothane	CHBrCICF ₃	1.0	0.13	3.77e-12	151	3.77e-12	41
Halon-2401	CHFBrCF ₃	2.9	0.19	1.68e-11	674	1.68e-11	184
Halon-2402	CBrF ₂ CBrF ₂	20.0	0.31	8.59e-11	3440	1.35e-10	147
Fully Fluorinated Species							
Nitrogen trifluoride	NF ₃	500.0	0.20	3.19e-10	12,800	1.47e-09	16,10
Sulphur hexafluoride	SF ₆	3,200.0	0.57	4.37e-10	17,500	2.16e-09	23,50
(Trifluoromethyl) sulphur pentafluoride	SF ₅ CF ₃	800.0	0.59	3.36e-10	13,500	1.60e-09	17,40
Sulphuryl fluoride	SO ₂ F ₂	36.0	0.20	1.71e-10	6840	3.76e-10	409
PFC-14	CF4	50,000.0	0.09	1.22e-10	4880	6.08e-10	663
PFC-116	C ₂ F ₆	10,000.0	0.25	2.05e-10	8210	1.02e-09	11,10
PFC-c216	c-C ₃ F ₆	3,000.0	0.23°	1.71e-10	6850	8.44e-10	920
PFC-218	C ₃ F ₈	2,600.0	0.28	1.66e-10	6640	8.16e-10	890
PFC-318	c-C ₄ F ₈	3,200.0	0.32	1.77e-10	7110	8.75e-10	954

Table 8.A.1 (continued)

Acronym, Common Name or Chemical Name	Chemical Formula	Lifetime (Years)	Radia- tive Effi- ciency (W m ⁻² ppb ⁻¹)	AGWP 20-year (W m-2 yr kg-1)	GWP 20-year	AGWP 100-year (W m- ² yr kg- ¹)	GWP 100-yea
PFC-31-10	C _a F ₁₀	2,600.0	0.36	1.71e-10	6870	8.44e-10	9200
Perfluorocyclopentene	c-C ₃ F ₈	31.0 days	0.081	1.71e-13	7	1.71e-13	2
PFC-41-12	n-C ₃ F _{t2}	4,100.0	0.41	1.58e-10	6350	7.84e-10	8550
PFC-51-14	n-C _s F ₁₄	3,100.0	0.44	1.47e-10	5890	7.26e-10	7910
PFC-61-16	n-C ₁ F _{N6}	3,000.0	0.50	1.45e-10	5830	7.17e-10	7820
PFC-71-18	C ₈ F ₁₈	3,000.0	0.55	1.42e-10	5680	6.99e-10	7620
PFC-91-18	C ₁₀ F ₁₈	2,000.0	0.55	1.34e-10	5390	6.59e-10	7190
Perfluorodecalin (cis)	Z-C ₁₀ F ₁₈	2,000.0	0.56	1.35e-10	5430	6.64e-10	7240
Perfluorodecalin (trans)	E-C ₁₀ F ₁₈	2,000.0	0.48	1.18e-10	4720	5.77e-10	6290
PFC-1114	CF ₂ =CF ₂	1.1 days	0.002	2.68e-16	<1	2.68e-16	<1
PFC-1216	CF ₃ CF=CF ₂	4.9 days	0.01	6.42e-15	<1	6.42e-15	<1
Perfluorobuta-1,3-diene	CF ₂ =CFCF=CF ₂	1.1 days	0.003	3.29e-16	<1	3.29e-16	<1
Perfluorobut-1-ene	CF ₃ CF ₂ CF=CF ₂	6.0 days	0.02	8.38e-15	<1	8.38e-15	<1
Perfluorobut-2-ene	CF ₁ CF=CFCF ₁	31.0 days	0.07	1.62e-13	6	1.62e-13	2

Structure of the Common Reporting Tables (CRT)



Structure of the Common Reporting Tables (CRT)

Summary tables Other cross-sectoral tables Sectoral tables

- Sectoral Background Data Tables
- Sectoral Report Tables
- Other (e.g. reference approach for energy)

CRT – Sectoral Background Data tables

- Emissions/Removals
- Activity data (AD)
- Implied emission factors (IEF) - automatically calculated

	Activit	y data	Implied e	mission	factors	Е	mission	S	
TABLE 1.A(a) SECTORAL BAC	KGROUND	DATA FOR	ENERGY			Year			
Fuel combustion activities - sector	To be re	eported				To	be repor	tedubmission	
(Sheet 3 of 4)			Automati	cally cal	culated	_		UNFCCC	
No array and the large of									
GREENHOUSE GAS SOURCE	AGGREGATE A	CTIVITY DATA	IMPLIED	EMISSION FAC	TORS		EMISSIONS	ĺ	
AND SINK CATEGORIES	Consu	mption	CO ₂ ⁽¹⁾	CH4	N ₂ O	CO2 ⁽²⁾	CH ₄	N ₂ O	
	(TJ)	NCV/GCV ⁽³⁾	(t/TJ)	(kg/T	J)		(kt)		
1.A.3 Transport					1				
Liquid fuels									
Solid fuels									
Gaseous fuels									
Other fossil fuels ⁽⁴⁾									
a. Domestic aviation ⁽¹⁰⁾									
Aviation gasoline									
Jet kerosene									
b. Road transportation (11)									
Gasoline									
Diesel oil									
Liquefied petroleum gases (LPG)									
i. Cars									
Gasoline									
Diesel oil Liquefied petroleum gases (LPG)									
ii. Light duty trucks									
Gasoline									
Diesel oil									
Liquefied petroleum gases (LPG)									
Enqueried petroledin gases (EFG)									

CRT – Sectoral Background Data tables

Automatic aggregation for subtotals of categories

GREENHOUSE GAS SOURCE	AGGREGATE ACTIV	VITY DATA	
AND SINK CATEGORIES	Consumption		
	(TJ)	NCV/GCV ⁽³⁾	

b. Road transportation (11)	P+Q+R+S+T+U NC	V
Gasoline	P+S NC	V
Diesel oil	Q+T \ NC	V
Liquefied petroleum gases (LPG)	LR+U \ NC	V
i. Cars	P+Q+R	V
Gasoline	—— P NC	V
Diesel oil	—— Q NC	V
Liquefied petroleum gas es (LPG)	R NC	V
ii. Light duty trucks	S+T+U	V
Gasoline	S NC	V
Diesel oil	T NC	V
Liquefied petroleum gases (LPG)	U NC	V

CRT – Sectoral Report tables

- **■**Emissions for GHGs and other gases, in kt of each gas (for HFCs and PFCs in kt CO2 eq.)
- **■**No need to fill data in reporter in this level.

TABLE 5 SECTORAL REPORT FOR WASTE (Sheet 1 of 1)

Year Submission Country

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	$CO_2^{(1)}$	CH ₄	N ₂ O	NO _x	СО	NMVOC	SO ₂
GREENHOUSE GAS SOURCE AND SHIR CATEGORIES		•	•	(kt)	•		
Total waste							
A. Solid waste disposal							
Managed waste disposal sites							
2. Unmanaged waste disposal sites							
3. Uncategorized waste disposal sites							
B. Biological treatment of solid waste							
1. Composting							
Anaerobic digestion at biogas facilities							
C. Incineration and open burning of waste							
1. Waste incineration							
2. Open burning of waste							
D. Wastewater treatment and discharge							
1. Domestic wastewater							
2. Industrial wastewater							
3. Other (as specified in table 5.D)							
E. Other (please specify)							
Memo item: (2)							
Long-term storage of C in waste disposal sites							
Annual change in total long-term C storage							
Annual change in total long-term C storage in HWP waste ⁽³⁾							

CRT – Summary tables & Other cross sectoral tables

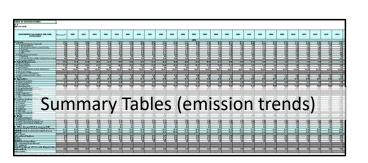
■Summary 1	Summary of GHGs emissions/removals and other gases emissions
------------	--

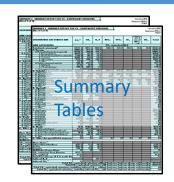
in kt of each gas (for F-gases in kt CO2 eq.)

Summary 2 Summary of GHGs emissions/removals in kt CO2 eq.

Summary 3 Summary of methods and EFs applied

■Table 6 Indirect emissions of N2O and CO2

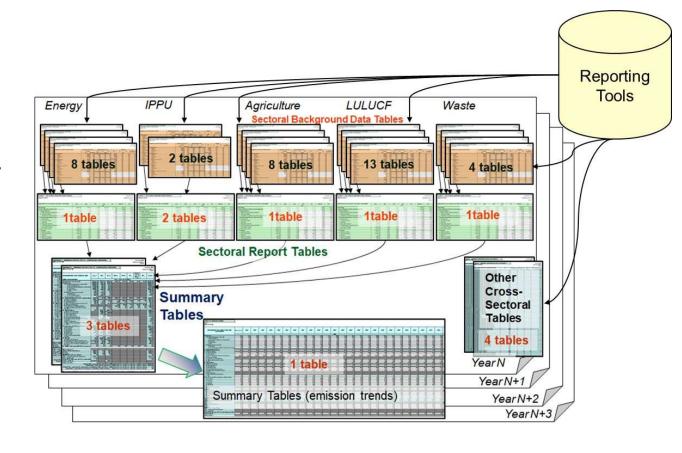

■Table 7 the result of key category analysis (2006 IPCC GL's approach 1)


■ Table 8 Recalculations (comparing with the previous submission)

■Table 9 Completeness – information on notation keys (i.e. NE and IE)

■Table 10 Emissions trends

Summary table on the use of flexibility provisions



Structure of the Common Reporting Tables (CRT)

- Reporting Tools generate the CRT agreed by Parties
- Data to be filled are ONLY most disaggregated level of categories
- CRT output consists of 49 tables (for a year)

Outline of the national inventory document (NID)

Outline of the national inventory document (NID)

EXECUTIVE SUMMARY

- **■**Chapter 1: National circumstances, institutional arrangements and cross-cutting information
- Chapter 2: Trends in greenhouse gas emissions and removals
- Chapter 3: Energy (CRT sector 1)
- Chapter 4: Industrial processes and product use (CRT sector 2)
- Chapter 5: Agriculture (CRT sector 3)
- Chapter 6: Land use, land-use change and forestry (CRT sector 4)
- Chapter 7: Waste (CRT sector 5)
- Chapter 8: Other (CRT sector 6) (if applicable)
- **Chapter 9: Indirect carbon dioxide and nitrous oxide emissions (related to non-mandatory provisions as per para. 52 of the MPGs)**
- **■**Chapter 10: Recalculations and improvements

Outline of the national inventory document (NID) (cont.)

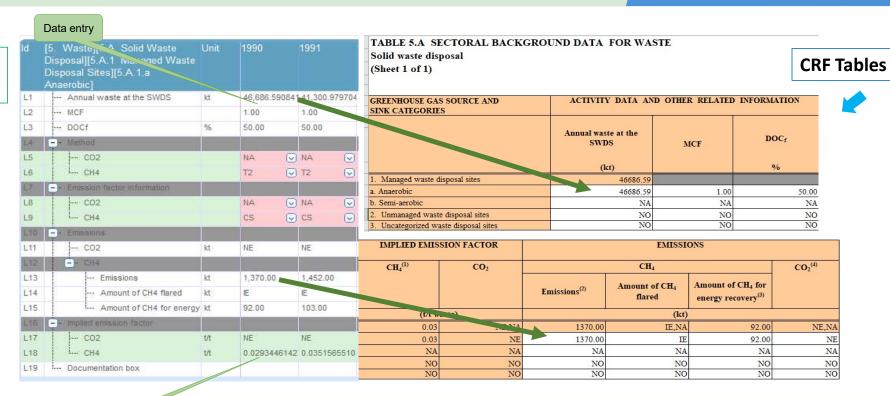
Chapter 4: Industrial processes and product use (CRT sector 2)

- 4.1. Overview of the sector (e.g. quantitative overview and description, including trends and methodological tiers by category) and background information
- 4.2. Category (CRT category number)
- 4.2.1. Category description (e.g. characteristics of sources)
- 4.2.2. Methodological issues (e.g. choice of methods/AD/EFs used, assumptions, parameters and conventions underlying the emission estimates and the rationale for their selection, and so on)
- 4.2.3. Description of any flexibility applied (i.e. by developing country Parties as per paras. 4–6 of the MPGs)
- 4.2.4. Uncertainty assessment and time-series consistency (flexibility provided to those developing country Parties that need it in the light of their capacities as per para. 29 of the MPGs)
- 4.2.5. Category-specific QA/QC and verification, if applicable (related to non-mandatory provisions as per para. 35 of the MPGs, with flexibility provided to those developing country Parties that need it in the light of their capacities as per paras. 34–35 of the MPGs)
- 4.2.6. Category-specific recalculations, if applicable, including explanatory information and justifications for recalculations, changes made in response to the review process and impacts on emission trends
- 4.2.7. Category-specific planned improvements, if applicable (e.g. methodologies, AD, EFs), including tracking of those identified in the review process (related to a non-mandatory provision as per para. 7 of the MPGs, with flexibility provided to those developing country Parties that need it in the light of their capacities as per para. 7(c) of the MPGs)

Outline of the national inventory document (NID) (cont.)

- Annexes to the national inventory document
- **Annex I:** Key categories (flexibility provided to those developing country Parties that need it in the light of their capacities as per para. 25 of the MPGs)
- •Annex II: Uncertainty assessment (flexibility provided to those developing country Parties that need it in the light of their capacities as per para. 29 of the MPGs)
- ■Annex III: Detailed description of the reference approach (including inputs to the reference approach such as the national energy balance) and the results of the comparison of national estimates of emissions with those obtained using the reference approach (related to a non-mandatory provision as per para. 36 of the MPGs)
- ■Annex IV: QA/QC plan (related to a non-mandatory provision as per para. 35 of the MPGs, with flexibility provided to those developing country Parties that need it in the light of their capacities as per paras. 34–35 of the MPGs)
- •Annex V: Any additional information, as applicable, including detailed methodological descriptions of source or sink categories and the national emission balance
- Annex VI: Common reporting tables

Key milestones and deliverables for ETF reporting tools



Existing reporting tools 1

CRF Reporter user interface

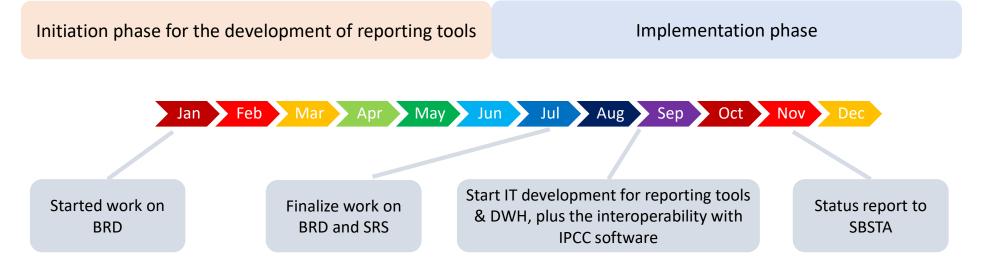
automatic calculation

Summary, trend, KCA, recalculation tables are automatically filled in

Key outcomes on ETF

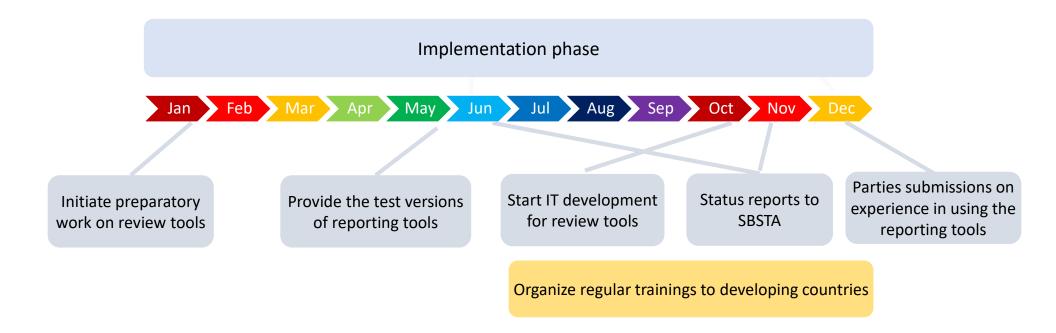
Finalized discussions on the MPGs for ETF (decision 5/CMA.3) and adoption of:

- Common reporting tables (CRT) for reporting the GHG inventories
- Common tabular formats (CTF1) for tracking progress in implementing NDCs
- Common tabular formats (CTF2) for FTC support provided and mobilized
- Outlines of the Biennial Transparency Report (BTR) & national inventory document (NID)
- Training programme for technical experts participating in reviews

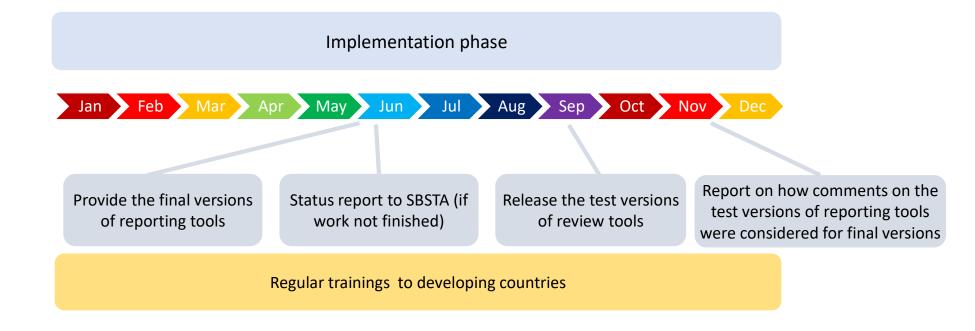

First BTRs are due by 31 December 2024 (poss. earlier)

Reporting tools

Initiation phase – 2022



2022



2023

2024

unfccc.int

Thank You

