

NIES International Forum

16 February 2023

Thailand Net Zero Emissions 2050

Research Team

Thammasat University Research Unit in Sustainable Energy and Built Environment Sirindhorn International Institute of Technology Thammasat University

Bundit Limmeechokchai Pornphimol Winyuchakrit Salony Rajbhandari Piti Pita Pemika Misila Bijay Bahadur Pradhan Achiraya Chaichaloempreecha Sukanya Kanbua

GHG Mitigation Policies

"Prime Minister Prayut Chan-o-cha expressed Thailand's willingness to fight climate change, aiming to reach carbon neutrality in 2050 and net zero emissions by 2065."

"With the adequate, timely and equitable support, through technology transfer and cooperation and, most importantly, the availability of and access to ample green financing facilities, Thailand can increase our Nationally determined contributions (NDC) to 40% and reach carbon neutrality in 2050."

National Plans

The 20-Year National Strategy 2018 – 2037

The 12th National Economic and Social Development Plan 2017 – 2021

Policy and Plan for Enhancement and Conservation of National Environmental Quality 2017 – 2036

Climate Change Master Plan (2015 – 2050)

Nationally Appropriate Mitigation
Action (NAMA)

Thailand's Nationally Determined

Contribution (NDC)

NDC Sectoral Action Plan for the Energy Sector 2021 – 2030

The Second Updated Thailand's

Nationally Determined Contribution

(2nd Updated NDC)

Thailand's Long-Term Low
Greenhouse Gas Emission
Development Strategy (LT-LEDS)

Thailand's NDC Roadmap on Mitigation 2021 – 2030

Energy & Transport

Waste

- Waste reduction
- Municipal wastewater management
- Industrial wastewater management

- Increase power generation efficiency
- Energy efficiency in buildings/households
- Energy efficiency in transport
- Renewable energy generation
- Promote biofuels
- Etc.

JPPU

- Clinker substitution
- Replacement of refrigerants

Total GHG Reduction 222 MtCO₂eq

Note: Updated NDC 2022

Energy (EPPO)

NDC Sectoral
Action Plan Sector
2021-2030

IPPU (DIW) Total GHG Reduction 222 MtCO₂eq

Transport (OTP)

Waste (PCD)

Supportive Action Plan to support NDC Implementation

Research Methodology Framework of Thailand's Revised LTS and Updated NDC

Mitigation policy and measures in the Energy, IPPU, AFOLU and Waste sectors

Driving factors

- Population
- GDP
- Energy prices
- Energy balance
- Tech. cost & eff.
- Emission factor
- Discount rate
- No. of households
- Income
- Urbanization rate

Energy consumption

Energy mix

Energy system cost

Macro economic impact

GDP loss

Welfare loss

HH. & Gov. consumption

Sectoral production

Carbon price

AIM/CGE for Thailand

AIM/Enduse for Thailand

Energy/Material

- Fossil fuel
- Renewable energy

Technology

- Power plants
- Refrigeration

- Vehicle
- Boiler

• LED

Service Demand

- Electricity demand
- Travel and freight demand
- Lighting
- Cooling
- Heating

Energy consumption/Emissions

Energy/Emissions Data

Technology Selection

Energy/material demand

Technology Information

Socio-economic Driver

- Demography
- Economic activity
- Energy/material consumption behavior
- Cement plants structure
- Lifestyle

Power Sector

Building Sector

STEP 1

STEP 2

STEP 3

Energy consumption in buildings

Kerosene

Charcoal

Paddy husk

Fuel wood

LPG

Electricity

Solar

Building Technologies

Lighting

Heating

Entertainment

Cooling

Cooking

Others

Service demand in buildings

Lighting

Heating

Cooling

Cooking

Others

Manufacturing Industries

Non-metallic

Textile

Paper and pulp

Fabricated metal

Wood

Food and beverage

Basic metal

Chemical

Others

Transport Sector

IPCC AR6

IPCC Sixth Assessment Report Global Warming Potentials

Greenhouse Gas	100 Year Time Period			20 Year Time Period		
	AR4 2007	AR5 2014	AR6 2021	AR4 2007	AR5 2014	AR6 2021
CO ₂	1	1	1	1	1	1
CH ₄ fossil origin	25	28	29.8	72	84	82.5
CH ₄ non fossil origin			27.2			80.8
N ₂ O	298	265	273	289	264	273

Source: AR6 (IPCC-WGI, 2021)

Thailand's Greenhouse Gas Emission Situation in BUR4

Source: Thailand BUR4 (UNFCCC, 2022)

Criteria for MAC Analysis

Source: SIIT-TU (2011) 15

Many options are available now in all sectors to offer net emissions by 2030 Relative costs vary across countries and in the longer term compared to 2030

Source: AR6-WGIII (IPCC, 2022) 16

Many options are available now in all sectors to offer net emissions by 2030 Relative costs vary across countries and in the longer term compared to 2030

Source: AR6-WGIII (IPCC, 2022) 17

Many options are available now in all sectors to offer net emissions by 2030 Relative costs vary across countries and in the longer term compared to 2030

Source: AR6-WGIII (IPCC, 2022) 18

GHG Emission Levels in BAU and Updated NDC 2022

Updated NDC 2022

GHG reduction by sector in 2030 in the case of Unconditional NDC 30%

GHG Reduction Potential and Cost in Electricity Generation in 2030

Thailand CO_2 Emissions Removals by Sinks

CO₂ emission removals by sinks in LULUCF sector

Carbon Neutrality in 2050

Thailand CO₂ emissions sources and sinks to achieve Carbon Neutrality in 2050

Net Zero Emission in 2065

Thailand GHG emissions sources and sinks to achieve Net Zero Emission 2065

Solar PV in 2050 & 2065

YEAR	2050	2065	
Solar electricity generation (GWh)	217,804	312,202	
PV installed capacity (GW)	62	71	
PV land requirement (km²)	235	269	
PV area required (%)	0.05	0.05	

Macroeconomic Impacts and Cost-Benefit Analysis

Updated NDC2030

	25%	30%	40%
1. GDP loss (%)	-0.3	-0.4	-0.5
2. Government consumption expenditure (%)	7.5	8.3	10.6
3. Welfare loss (%)	-2.1	-2.4	-3.0
4. Carbon prices (Baht/tCO ₂ eq)	739	1,060	1,766

Conclusion

- AIM models can be used for policy analysis
 - Projection of local emission and impacts using AIM models
 - Analysis of climate policies and local air pollutants
 - Co-benefit analysis
 - Marginal abatement cost
 - Carbon tax policies, etc.
- Opportunities for young researchers to write research paper using AIM family of models as analytical tools.

